采用单一变量法研究了激光功率和温度对激光沉积制造Ti65钛合金高周疲劳性能的影响,通过光学显微镜、超声波探测仪和扫描电镜(scanning electron microscope,SEM)对试样的显微组织、内部缺陷和断口形貌进行了分析.结果表明,不同功率试...采用单一变量法研究了激光功率和温度对激光沉积制造Ti65钛合金高周疲劳性能的影响,通过光学显微镜、超声波探测仪和扫描电镜(scanning electron microscope,SEM)对试样的显微组织、内部缺陷和断口形貌进行了分析.结果表明,不同功率试样的显微组织均为网篮组织,α相的含量明显高于β相的含量,高温下网篮组织中的α相发生粗化,晶粒内部出现一些块状α相,组织的均匀性下降.室温和高温条件下高功率和低功率试样的疲劳极限分别为454,398.5,371.5 MPa和336.25 MPa,同一温度下,高功率试样的疲劳极限要比低功率试样的疲劳极限高10%以上;同一功率下,室温试样的疲劳极限要比高温试样的疲劳极限高18%以上,温度对于高周疲劳的影响更大.激光沉积制造Ti65钛合金试样内部存在气孔缺陷,低功率试样中气孔的数目多且直径大,其疲劳源均形核于气孔缺陷处,气孔直径越大,距离表面距离越近,裂纹萌生的越快,疲劳寿命越低,高功率试样中气孔的数目少且直径小,其疲劳源均萌生于表面裂纹,缺陷的存在对裂纹的萌生存在很大影响.展开更多
A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast...A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium-bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, andistribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each componenFinally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layemainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phaswhose major crystalline phase is magnesium melilite(Ca2Mg Si2O7) and the main source of the slag phase is coke ash. It is clearly determinethat solid particles such as graphite, Ti(C,N) and Mg Al2O4play an important role in the formation of the protective layer, and the key factofor promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.展开更多
A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account...A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300~ C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.展开更多
One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat ...One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat transfer, models of BF hearth bottom are built based on the actual examples using software and VC language, and the calculated results are in good agreement with the data of BF dissection after blowing out. The temperature distribution and the capability of the resistance to erosion for different structures of hearth bottom are analyzed, especially the two prevalent kinds of hearth bottom arrangements called "the method of heat transfer" for all-carbon brick bottom and "the method of heat isolation" for ceramic synthetic hearth bottom. Features of the two kinds of hearth bottoms are analyzed. Also the different ways of protecting the hearth bottom are clarified, according to some actual examples. After that, the same essence of prolonging life, and the fact that the existence of a "protective skull" with low thermal conductivity between the hot metal and brick layers is of utmost importance are shown.展开更多
A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estim...A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase ~om hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face tem- perature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.展开更多
文摘采用单一变量法研究了激光功率和温度对激光沉积制造Ti65钛合金高周疲劳性能的影响,通过光学显微镜、超声波探测仪和扫描电镜(scanning electron microscope,SEM)对试样的显微组织、内部缺陷和断口形貌进行了分析.结果表明,不同功率试样的显微组织均为网篮组织,α相的含量明显高于β相的含量,高温下网篮组织中的α相发生粗化,晶粒内部出现一些块状α相,组织的均匀性下降.室温和高温条件下高功率和低功率试样的疲劳极限分别为454,398.5,371.5 MPa和336.25 MPa,同一温度下,高功率试样的疲劳极限要比低功率试样的疲劳极限高10%以上;同一功率下,室温试样的疲劳极限要比高温试样的疲劳极限高18%以上,温度对于高周疲劳的影响更大.激光沉积制造Ti65钛合金试样内部存在气孔缺陷,低功率试样中气孔的数目多且直径大,其疲劳源均形核于气孔缺陷处,气孔直径越大,距离表面距离越近,裂纹萌生的越快,疲劳寿命越低,高功率试样中气孔的数目少且直径小,其疲劳源均萌生于表面裂纹,缺陷的存在对裂纹的萌生存在很大影响.
基金financially supported by the Natural Science Foundation of China(No.51304014)the Natural Science Foundation of China and Baosteel(No.51134008)the National Basic Research Program of China(No.2012CB720401)
文摘A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium-bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, andistribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each componenFinally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layemainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phaswhose major crystalline phase is magnesium melilite(Ca2Mg Si2O7) and the main source of the slag phase is coke ash. It is clearly determinethat solid particles such as graphite, Ti(C,N) and Mg Al2O4play an important role in the formation of the protective layer, and the key factofor promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.
基金financially supported by the National Key Basic Research and Development Program of China(No. 2012CB720405)
文摘A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300~ C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.
基金Item Sponsored by National Natural Science Foundation of China (60472095)
文摘One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat transfer, models of BF hearth bottom are built based on the actual examples using software and VC language, and the calculated results are in good agreement with the data of BF dissection after blowing out. The temperature distribution and the capability of the resistance to erosion for different structures of hearth bottom are analyzed, especially the two prevalent kinds of hearth bottom arrangements called "the method of heat transfer" for all-carbon brick bottom and "the method of heat isolation" for ceramic synthetic hearth bottom. Features of the two kinds of hearth bottoms are analyzed. Also the different ways of protecting the hearth bottom are clarified, according to some actual examples. After that, the same essence of prolonging life, and the fact that the existence of a "protective skull" with low thermal conductivity between the hot metal and brick layers is of utmost importance are shown.
基金supported the National Science Foundation for Young Scientists of China (No. 51304014)the Open Foundation of the State Key Laboratory of Advanced Metallurgy (No. 41603007)
文摘A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase ~om hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face tem- perature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.