The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical ...The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical and chemical barriers between the molten reactive Al and the steel substrate were deposited by Cathodic Arc Evaporation onto 10 mm-thick heat-resistant steel plates. The dipping tests were conducted in a 700℃ A356 melt for 1 to 21 h at intervals of 3 h. The damage of the coated steel was eva...展开更多
The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed t...The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204.展开更多
Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test ...Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test alloys was examined at 1 200 ℃ for 500 h. The effects of Al and Si on oxidation resistance were studied through analyses of X-ray diffraction (XRD) and scanning electron microscope (SEM). It is shown that the composition of oxide scales is a decisive factor for the oxidation resistance of heat resistant steels. The compounded scale composed of Cr203, α-Al2O3, SiO2 and Fe (Ni)Cr2O4, with flat and compact structure, fine and even grains, exhibits complete oxidation resistance at 1 200 ℃. Its oxidation weight gain rate is only 0.081 g/(m^2.h). By the criterion of standard Gibbs formation free energy, a model of nucleation and growth of the compounded scale was established. The formation of the compounded scale was the result of the competition of being oxidated and reduction among Al, Si, and the matrix metal elements of Fe, Cr and Ni. The protection of the compounded scale was analyzed from the perspectives of electrical conductivity and strength properties.展开更多
In the present study, the market needs for the (HAZ) toughness are analyzed, and the mechanism of the development of steel plates with excellent heat affected zone decrease in the HAZ toughness during high-heat inpu...In the present study, the market needs for the (HAZ) toughness are analyzed, and the mechanism of the development of steel plates with excellent heat affected zone decrease in the HAZ toughness during high-heat input welding is discussed.The important countermeasure for improving the HAZ toughness is to employ the technology of oxide metallurgy ,namely,to make use of fine inclusion particles for improving the microstructure of HAZ. The progress and theories of oxide metallurgy technologies developed in the Nippon Steel Corporation ( NSC), the JFE Steel Corporation and the Kobe Steel Group are illustrated. Steel plates developed by these three companies with excellent HAZ toughness are introduced.展开更多
在硅酸盐溶液中采用等离子体电解氧化技术在60%SiCP(体积分数)/2009铝基复合材料表面制备陶瓷膜。研究氧化膜的显微组织、成分、润湿性及其耐腐蚀性能,探讨SiC颗粒表面火花放电的产生机理。结果表明,来自硅酸盐溶液的不溶性化合物(SiO_(...在硅酸盐溶液中采用等离子体电解氧化技术在60%SiCP(体积分数)/2009铝基复合材料表面制备陶瓷膜。研究氧化膜的显微组织、成分、润湿性及其耐腐蚀性能,探讨SiC颗粒表面火花放电的产生机理。结果表明,来自硅酸盐溶液的不溶性化合物(SiO_(2))使SiC颗粒表面产生火花放电,Al-Si-O化合物中的缺陷为SiC颗粒表面放电电流的传导提供优先路径。1200s时铝基复合材料表面形成5.5μm厚的均匀膜层,膜层的表面自由能在40s时达到最大值37.10 m J/cm^(2),并在1200 s时下降到25.95 m J/cm^(2)。此外,等离子体电解氧化处理可以显著提高复合材料的耐蚀性。展开更多
The ex-service steam tubes containing dissimilar metal weld(DMW)between high Cr ferritic steel T91 and austenitic stainless steel TP347H and the ex-service steam tubes containing DMW between low Cr ferritic steel G102...The ex-service steam tubes containing dissimilar metal weld(DMW)between high Cr ferritic steel T91 and austenitic stainless steel TP347H and the ex-service steam tubes containing DMW between low Cr ferritic steel G102 and austenitic stainless steel TP347H were obtained from coal-fired thermal power plants in China,and their microstructures at the nickel-based weld metal(WM)/ferritic steel interfaces and oxidation characteristics were investigated.After operating for 15,000 h at steam temperature of 541 C and steam pressure of 17.5 MPa,a G102/TP347H DMW failed along the WM/G102 steel interface,which was a dangerous premature failure mode without obvious plastic deformation.This interfacial failure was attributed to the interaction between oxidation and cracking along the interface,where fracture appeared to be related with the strain concentration at the interface.Oxide notch along the WM/G102 steel interface was the precursor of premature interfacial failure of DMW involving G102.For the DMW involving high Cr ferritic steel T91,ferritic steel side could form a Cr-rich passive film during service and thus would not be further oxidized after operating for 67,000 h at steam temperature of 541 C and steam pressure of 3.5 MPa.It was concluded that oxidation played a more important role in failure of these DMWs,and retarding the development of oxidation and avoiding the interfacial oxide notch would dramatically improve the service performance of steam tubes containing DMWs.展开更多
For steam tubes used in thermal power plant,the inner and outer walls were operated in high-temperature steam and flue gas environments respectively.In this study,structure,microstructure and chemical composition of o...For steam tubes used in thermal power plant,the inner and outer walls were operated in high-temperature steam and flue gas environments respectively.In this study,structure,microstructure and chemical composition of oxide films on inner and outer walls of exservice low Cr ferritic steel G102 tube and exservice high Cr ferritic steel T91 tube were analyzed.The oxide film was composed of outer oxide layer,inner oxide layer and internal oxidation zone.The outer oxide layer on the original surface of tube had a porous structure containing Fe oxides formed by diffusion and oxidation of Fe.More specially,the outer oxide layer formed in flue gas environment would mix with coal combustion products during the growth process.The inner oxide layer below the original surface of tube was made of Fe–Cr spinel.The internal oxidation zone was believed to be the precursor stage of inner oxide layer.The formation of internal oxidation zone was due to O diffusing along grain boundaries to form oxide.There were Fe–Cr–Si oxides discontinuously distributed along grain boundaries in the internal oxidation zone of G102,while there were Fe–Cr oxides continuously distributed along grain boundaries in that of T91.展开更多
文摘The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical and chemical barriers between the molten reactive Al and the steel substrate were deposited by Cathodic Arc Evaporation onto 10 mm-thick heat-resistant steel plates. The dipping tests were conducted in a 700℃ A356 melt for 1 to 21 h at intervals of 3 h. The damage of the coated steel was eva...
文摘The kinetic curves of the high-temperature oxidation of austenitic heat resistant stainless steel 1. 4828 at 1 050 ℃ were measured using a weighing method. It is shown that the oxidation curves at 1 050 ℃ followed the parabolic line law, and after 250 h of oxidation, the mass gain was about 80 g/m2. The surface morphology and structure of the oxide layers were studied by scanning electron microscopy and X-ray diffraction. A complicated oxide layer obtained at 1 050 ℃ was mainly composed, from inner to outer, of (FeSi) 3 04, Cr2 03, Fe2 03, and spinel oxides FeCr204 and NiMn204.
基金Supported by Shandong Science and Technology Key Projects (No2007GG30003004)
文摘Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test alloys was examined at 1 200 ℃ for 500 h. The effects of Al and Si on oxidation resistance were studied through analyses of X-ray diffraction (XRD) and scanning electron microscope (SEM). It is shown that the composition of oxide scales is a decisive factor for the oxidation resistance of heat resistant steels. The compounded scale composed of Cr203, α-Al2O3, SiO2 and Fe (Ni)Cr2O4, with flat and compact structure, fine and even grains, exhibits complete oxidation resistance at 1 200 ℃. Its oxidation weight gain rate is only 0.081 g/(m^2.h). By the criterion of standard Gibbs formation free energy, a model of nucleation and growth of the compounded scale was established. The formation of the compounded scale was the result of the competition of being oxidated and reduction among Al, Si, and the matrix metal elements of Fe, Cr and Ni. The protection of the compounded scale was analyzed from the perspectives of electrical conductivity and strength properties.
文摘In the present study, the market needs for the (HAZ) toughness are analyzed, and the mechanism of the development of steel plates with excellent heat affected zone decrease in the HAZ toughness during high-heat input welding is discussed.The important countermeasure for improving the HAZ toughness is to employ the technology of oxide metallurgy ,namely,to make use of fine inclusion particles for improving the microstructure of HAZ. The progress and theories of oxide metallurgy technologies developed in the Nippon Steel Corporation ( NSC), the JFE Steel Corporation and the Kobe Steel Group are illustrated. Steel plates developed by these three companies with excellent HAZ toughness are introduced.
基金sponsored by the National Natural Science Foundation of China(Nos.12105017,51671032)Beijing Municipal Natural Science Foundation,China(No.2172029)。
文摘在硅酸盐溶液中采用等离子体电解氧化技术在60%SiCP(体积分数)/2009铝基复合材料表面制备陶瓷膜。研究氧化膜的显微组织、成分、润湿性及其耐腐蚀性能,探讨SiC颗粒表面火花放电的产生机理。结果表明,来自硅酸盐溶液的不溶性化合物(SiO_(2))使SiC颗粒表面产生火花放电,Al-Si-O化合物中的缺陷为SiC颗粒表面放电电流的传导提供优先路径。1200s时铝基复合材料表面形成5.5μm厚的均匀膜层,膜层的表面自由能在40s时达到最大值37.10 m J/cm^(2),并在1200 s时下降到25.95 m J/cm^(2)。此外,等离子体电解氧化处理可以显著提高复合材料的耐蚀性。
基金National Natural Science Foundation of China(Project 51901113 and 51775300)the State Key Laboratory of Tribology in Tsinghua University,and the State Key Lab of Advanced Welding and Joining in Harbin Institute of Technology(No.AWJ-21M03).
文摘The ex-service steam tubes containing dissimilar metal weld(DMW)between high Cr ferritic steel T91 and austenitic stainless steel TP347H and the ex-service steam tubes containing DMW between low Cr ferritic steel G102 and austenitic stainless steel TP347H were obtained from coal-fired thermal power plants in China,and their microstructures at the nickel-based weld metal(WM)/ferritic steel interfaces and oxidation characteristics were investigated.After operating for 15,000 h at steam temperature of 541 C and steam pressure of 17.5 MPa,a G102/TP347H DMW failed along the WM/G102 steel interface,which was a dangerous premature failure mode without obvious plastic deformation.This interfacial failure was attributed to the interaction between oxidation and cracking along the interface,where fracture appeared to be related with the strain concentration at the interface.Oxide notch along the WM/G102 steel interface was the precursor of premature interfacial failure of DMW involving G102.For the DMW involving high Cr ferritic steel T91,ferritic steel side could form a Cr-rich passive film during service and thus would not be further oxidized after operating for 67,000 h at steam temperature of 541 C and steam pressure of 3.5 MPa.It was concluded that oxidation played a more important role in failure of these DMWs,and retarding the development of oxidation and avoiding the interfacial oxide notch would dramatically improve the service performance of steam tubes containing DMWs.
基金supported by the National Natural Science Foundation of China (Nos.51901113 and 51775300)the State Key Laboratory of Tribology in Tsinghua University, and the State Key Lab of Advanced Welding and Joining in Harbin Institute of Technology (No.AWJ-21M03)。
文摘For steam tubes used in thermal power plant,the inner and outer walls were operated in high-temperature steam and flue gas environments respectively.In this study,structure,microstructure and chemical composition of oxide films on inner and outer walls of exservice low Cr ferritic steel G102 tube and exservice high Cr ferritic steel T91 tube were analyzed.The oxide film was composed of outer oxide layer,inner oxide layer and internal oxidation zone.The outer oxide layer on the original surface of tube had a porous structure containing Fe oxides formed by diffusion and oxidation of Fe.More specially,the outer oxide layer formed in flue gas environment would mix with coal combustion products during the growth process.The inner oxide layer below the original surface of tube was made of Fe–Cr spinel.The internal oxidation zone was believed to be the precursor stage of inner oxide layer.The formation of internal oxidation zone was due to O diffusing along grain boundaries to form oxide.There were Fe–Cr–Si oxides discontinuously distributed along grain boundaries in the internal oxidation zone of G102,while there were Fe–Cr oxides continuously distributed along grain boundaries in that of T91.