For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e...For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.展开更多
In this paper a full theoretical thermal analysis of a large molten salt container,80-foot in diameter and 46-foot high,including a four-foot elliptic shell roof,is presented for two temperatures,the standard 565℃ an...In this paper a full theoretical thermal analysis of a large molten salt container,80-foot in diameter and 46-foot high,including a four-foot elliptic shell roof,is presented for two temperatures,the standard 565℃ and a futuristic 700℃,which substantially improves the efficiency of the molten salt containers through the use of a highly stable chloride salt called SS700(SaltStream 700).The theoretical analysis includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed theoretically using conductive heat transfer,however the area surrounding the soil surface around the bottom of the molten salt storage tank had convective heat transfer analysis included.The final designs presented in this paper seek to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃,which determines the thicknesses of the fiberglass and firebrick insulation.展开更多
In this paper a finite element thermal analysis model-using COMSOL-of a large molten salt container,80-foot in diameter and 46-foot high that includes a four-foot elliptic shell roof,is presented for a futuristic 700...In this paper a finite element thermal analysis model-using COMSOL-of a large molten salt container,80-foot in diameter and 46-foot high that includes a four-foot elliptic shell roof,is presented for a futuristic 700℃ design,which uses a highly stable chloride salt called SS700(SaltStream 700)that improves the efficiency of the tank when compared to the traditional 565℃.The FEA(finite element analysis)includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed by finite element using conductive heat transfer,however the area surrounding the soil surface around the bottom of the MS storage tank had convective heat transfer analysis included.The finite elements analyses presented are to verify the final fiberglass and firebrick insulation designs,which seeks to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃.These results are also compared to previously calculated theoretical results.展开更多
Contraction of resilience on generation side due to the introduction of inflexible renewable energy sources is demanding more elasticity on consumption side. It requires more intelligent systems to be implemented to m...Contraction of resilience on generation side due to the introduction of inflexible renewable energy sources is demanding more elasticity on consumption side. It requires more intelligent systems to be implemented to maintain power balance in the grid and to fulfill the consumer needs. This paper is concerned about the energy balance management of the system using intelligent agent-based architecture. The idea is to limit the peak power of each individual household for different defined time regions of the day according to power production during those time regions. Monte Carlo Simulation (MCS) has been employed to study the behavior of a particular number of households for maintaining the power balance based on proposed technique to limit the peak power for each household and even individual load level. Flexibility of two major loads i.e. heating load (heat storage tank) and electric vehicle load (battery) allows us to shift the peaks on demand side proportionally with the generation in real time. Different parameters related to heating and Electric Vehicle (EV) load e.g. State of Charge (SOC), storage capacities, charging power, daily usage, peak demand hours have been studied and a technique is proposed to mitigate the imbalance of power intelligently.展开更多
The melting and solidification process of sodium nitrate, which is used as energy storage material, is studied in a vertical arranged energy storage device with two different bimetal finned tube designs (with and wit...The melting and solidification process of sodium nitrate, which is used as energy storage material, is studied in a vertical arranged energy storage device with two different bimetal finned tube designs (with and without additional lateral fins) for enhancing the heat transfer. The finned tube design consists of a plain steel tube while the material for the longitudinal (axial) fins is aluminum. The investigation analyses the influence of the lateral fins on the charging and discharging process. Three-dimensional transient numerical simulations are performed using the ANSYS Fluent 14.5 software. The results show that, every obstruction given by lateral fins reduces the melting and solidification velocity in direction to the outer shell.展开更多
As one of promising clean and low-emission energy, wind power is being rapidly developed in China.However, it faces serious problem of wind curtailment,particularly in northeast China, where combined heat and power(CH...As one of promising clean and low-emission energy, wind power is being rapidly developed in China.However, it faces serious problem of wind curtailment,particularly in northeast China, where combined heat and power(CHP) units cover a large proportion of the district heat supply. Due to the inherent strong coupling between the power and the heat load, the operational flexibility of CHP units is severely restricted in winter to meet the heat supply demand, which imparts considerable stress on the wind power connection to the grid. To promote the integration of wind power and enhance the flexibility of CHP units, this paper presented a method of heat and power load dispatching by exploring the energy storage ability of electric heating boilers and district heating systems. The optimization results indicate that the proposed method can integrate additional wind power into the grid and reduce the coal consumption of CHP units over the optimized period. Furthermore, the thermal inertia of a district heating system is found to contribute more to the reduction of coal consumption, whereas the electric heating boilers contribute to lower wind curtailment.展开更多
The working principle of a controllable on-demand heating system based on off-peak electricity energy storage(COHSBOEES) is as follows: the cheap off-peak electricity energy is converted into heat energy for storage i...The working principle of a controllable on-demand heating system based on off-peak electricity energy storage(COHSBOEES) is as follows: the cheap off-peak electricity energy is converted into heat energy for storage in the evening, and the heat energy can be extracted on demand for heating during daytime peak or flat electricity periods. This technology can promote the smooth operation of the power grid, solve the problem of peak regulation for the electrical network, and promote renewable energy consumption. Based on the controllable on-demand heating strategy, a COHSBOEES for a heating area of 1000 m^2 was designed and built. Variations in the energy consumption and operating cost of the COHSBOEES in different heating situations were analyzed. The results showed that, off-peak electricity energy storage for heating was energy saving in comparison with central heating when the heating intensity of the COHSBOEES was 70 W/m^2 and the on-demand heating rate was less than 73.0%, and the off-peak electricity energy storage for heating was energy saving at any on-demand heating rate when the COHSBOEES had a heating intensity of 50 W/m^2. After the COHSBOEES has been running for three complete heating seasons, when the off-peak electricity price was 0.25 yuan/kW·h, the energy consumption cost of the COHSBOEES can be saved by 77.6% in comparison with central heating.展开更多
In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybr...In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybrid electric vehicle (HEV). Using the numerical simulation meth- od, the power system heat transfer model was built. By comparing the performance of three differ- ent schemes through the Simulink simulation, the best cooling system scheme was found. Base on characteristics of these cooling system structures, the reasonableness of the simulation results were analyzed and verified. The results showed that the cooling system designation based on the numerical simulation could describe the cooling system performance accurately. This method could simplify the design process, improve design efficiency and provide a new way for designing a multi-heat source vehicle cooling system.展开更多
To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power...To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power output distribution and fluctuation characteristics at different time scales, and finally proposes a two level coordinated control strategy based on electric heat storage and pumped storage. The optimization target of the first level coordinated control is the lowest operation cost and the largest wind power utilization rate. Based on prediction of thermoelectric load and wind power, the operation economy of the system and wind power accommodation level are improved with the cooperation of electric heat storage and pumped storage in regulation capacity. The second level coordinated control stabilizes wind power real time fluctuations by cooperating electric heat storage and pumped storage in control speed. The example results of actual wind farms in Jiuquan, Gansu verifies the feasibility and effectiveness of the proposed coordinated control strategy.展开更多
We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to ge...We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode. The state of charge (H2 frication in cathode) effectively enhances the open circuit voltages (OCVs) while the system gas pressure in electrodes also increases the OCVs. On the other hand, a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations. With the aid of recycled system heat, the roundtrip efficiency reaches as high as 92% for the repeated electricity storage and generation.展开更多
This study was carried out to determine the thermo-physical properties of rubber seed in the moisture range of 9.1%to 14.8%(w.b.).The length,width,thickness,measured surface area,bulk density and true density increase...This study was carried out to determine the thermo-physical properties of rubber seed in the moisture range of 9.1%to 14.8%(w.b.).The length,width,thickness,measured surface area,bulk density and true density increased with increasing moisture content with high coefficients of determination(significant at p<0.05).Their optimum values at 14.8%moisture content were 17.00 mm,11.94 mm,8.26 mm,285.20 mm^(2),295.00 kg/m^(3) and 470.67 kg/m^(3),respectively.The angle of repose increased as moisture content increased with low coefficient of determination and has optimum value of 28.81°at 14.8%moisture content.The specific heat capacity and thermal conductivity decreased linearly while thermal diffusivity increased exponentially with an increase in moisture content(significant at p<0.05).The optimum values of specific heat capacity,thermal conductivity and diffusivity at 14.8%moisture content were 55.84 kJ/(kg.K),0.032 W/(m.K)and 1.93×10^(-9) m^(2)/s,respectively.The results are essential in the design of storage structure for rubber seed.展开更多
Self-heating and electric field distribution are the primary factors affecting the accuracy of the Ultra High Voltage Direct Current(UHVDC)resistive divider.Reducing the internal temperature rise of the voltage divide...Self-heating and electric field distribution are the primary factors affecting the accuracy of the Ultra High Voltage Direct Current(UHVDC)resistive divider.Reducing the internal temperature rise of the voltage divider caused by self-heating,reducing the maximum electric field strength of the voltage divider,and uniform electric field distribution can effectively improve the UHVDC resistive divider’s accuracy.In this paper,thermal analysis and electric field distribution optimization design of 1200 kV UHVDC resistive divider are carried out:(1)Using the proposed iterative algorithm,the heat dissipation and temperature distribution of the high voltage DC resistive divider are studied,and the influence of the ambient temperature and the power of the divider on the temperature of the insulating medium of the divider is analyzed;(2)Established the finite element models of 1200 kV and 2×600 kV DC resistive dividers,analyzed the influence of the size of the grading ring and the installation position on the maximum electric field strength of the voltage divider,and calculated the impact of the shielding resistor layer on the vicinity of the measuring resistor layer.The research indicates that:(1)The temperature of the insulating medium is linearly related to the horsepower of the voltage divider and the ambient temperature;(2)After the optimized design of the electric field,the maximum electric field strength of the 1200 kV DC resistive divider is reduced to 1471 V/mm,which is about 24% lower than that of the unoptimized design;(3)Installing the shielding resistor layer can significantly improve the electric field near the measuring resistor layer.This paper has an important reference function for improving the accuracy of the UHVDC resistive divider.展开更多
为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid ...为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。展开更多
基金This work was supported by the National Key Research and Development Program of China(No.2019YFE0193200 KY202001)Science and Technology Planning Project of Beijing(No.Z201100008320001 KY191004).
文摘For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.
文摘In this paper a full theoretical thermal analysis of a large molten salt container,80-foot in diameter and 46-foot high,including a four-foot elliptic shell roof,is presented for two temperatures,the standard 565℃ and a futuristic 700℃,which substantially improves the efficiency of the molten salt containers through the use of a highly stable chloride salt called SS700(SaltStream 700).The theoretical analysis includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed theoretically using conductive heat transfer,however the area surrounding the soil surface around the bottom of the molten salt storage tank had convective heat transfer analysis included.The final designs presented in this paper seek to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃,which determines the thicknesses of the fiberglass and firebrick insulation.
文摘In this paper a finite element thermal analysis model-using COMSOL-of a large molten salt container,80-foot in diameter and 46-foot high that includes a four-foot elliptic shell roof,is presented for a futuristic 700℃ design,which uses a highly stable chloride salt called SS700(SaltStream 700)that improves the efficiency of the tank when compared to the traditional 565℃.The FEA(finite element analysis)includes conductive and convective heat transfer analysis in the steel container,elliptic roof shell,the fiberglass insulation,and firebrick insulation,and includes thermal insulation designs to safeguard against energy losses at high temperatures.The underlying soil and the high temperature concrete foundation were analyzed by finite element using conductive heat transfer,however the area surrounding the soil surface around the bottom of the MS storage tank had convective heat transfer analysis included.The finite elements analyses presented are to verify the final fiberglass and firebrick insulation designs,which seeks to limit heat losses to a maximum of 250 W/m^(2) while being able to operate at a minimum external ambient temperature of-10℃.These results are also compared to previously calculated theoretical results.
文摘Contraction of resilience on generation side due to the introduction of inflexible renewable energy sources is demanding more elasticity on consumption side. It requires more intelligent systems to be implemented to maintain power balance in the grid and to fulfill the consumer needs. This paper is concerned about the energy balance management of the system using intelligent agent-based architecture. The idea is to limit the peak power of each individual household for different defined time regions of the day according to power production during those time regions. Monte Carlo Simulation (MCS) has been employed to study the behavior of a particular number of households for maintaining the power balance based on proposed technique to limit the peak power for each household and even individual load level. Flexibility of two major loads i.e. heating load (heat storage tank) and electric vehicle load (battery) allows us to shift the peaks on demand side proportionally with the generation in real time. Different parameters related to heating and Electric Vehicle (EV) load e.g. State of Charge (SOC), storage capacities, charging power, daily usage, peak demand hours have been studied and a technique is proposed to mitigate the imbalance of power intelligently.
文摘The melting and solidification process of sodium nitrate, which is used as energy storage material, is studied in a vertical arranged energy storage device with two different bimetal finned tube designs (with and without additional lateral fins) for enhancing the heat transfer. The finned tube design consists of a plain steel tube while the material for the longitudinal (axial) fins is aluminum. The investigation analyses the influence of the lateral fins on the charging and discharging process. Three-dimensional transient numerical simulations are performed using the ANSYS Fluent 14.5 software. The results show that, every obstruction given by lateral fins reduces the melting and solidification velocity in direction to the outer shell.
基金supported by National Key Tech-nology R&D Program(No.2015BAA01B01)State Grid Corporation of China
文摘As one of promising clean and low-emission energy, wind power is being rapidly developed in China.However, it faces serious problem of wind curtailment,particularly in northeast China, where combined heat and power(CHP) units cover a large proportion of the district heat supply. Due to the inherent strong coupling between the power and the heat load, the operational flexibility of CHP units is severely restricted in winter to meet the heat supply demand, which imparts considerable stress on the wind power connection to the grid. To promote the integration of wind power and enhance the flexibility of CHP units, this paper presented a method of heat and power load dispatching by exploring the energy storage ability of electric heating boilers and district heating systems. The optimization results indicate that the proposed method can integrate additional wind power into the grid and reduce the coal consumption of CHP units over the optimized period. Furthermore, the thermal inertia of a district heating system is found to contribute more to the reduction of coal consumption, whereas the electric heating boilers contribute to lower wind curtailment.
基金The author gratefully acknowledges the financial support from the National Key Research and Development Plan of China(No.2018YFB0605901).
文摘The working principle of a controllable on-demand heating system based on off-peak electricity energy storage(COHSBOEES) is as follows: the cheap off-peak electricity energy is converted into heat energy for storage in the evening, and the heat energy can be extracted on demand for heating during daytime peak or flat electricity periods. This technology can promote the smooth operation of the power grid, solve the problem of peak regulation for the electrical network, and promote renewable energy consumption. Based on the controllable on-demand heating strategy, a COHSBOEES for a heating area of 1000 m^2 was designed and built. Variations in the energy consumption and operating cost of the COHSBOEES in different heating situations were analyzed. The results showed that, off-peak electricity energy storage for heating was energy saving in comparison with central heating when the heating intensity of the COHSBOEES was 70 W/m^2 and the on-demand heating rate was less than 73.0%, and the off-peak electricity energy storage for heating was energy saving at any on-demand heating rate when the COHSBOEES had a heating intensity of 50 W/m^2. After the COHSBOEES has been running for three complete heating seasons, when the off-peak electricity price was 0.25 yuan/kW·h, the energy consumption cost of the COHSBOEES can be saved by 77.6% in comparison with central heating.
基金Supported by the Ministerial Level Advanced Research Foundation(40402070101)
文摘In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybrid electric vehicle (HEV). Using the numerical simulation meth- od, the power system heat transfer model was built. By comparing the performance of three differ- ent schemes through the Simulink simulation, the best cooling system scheme was found. Base on characteristics of these cooling system structures, the reasonableness of the simulation results were analyzed and verified. The results showed that the cooling system designation based on the numerical simulation could describe the cooling system performance accurately. This method could simplify the design process, improve design efficiency and provide a new way for designing a multi-heat source vehicle cooling system.
基金National Natural Science Foundation of China(No.61663019)
文摘To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power output distribution and fluctuation characteristics at different time scales, and finally proposes a two level coordinated control strategy based on electric heat storage and pumped storage. The optimization target of the first level coordinated control is the lowest operation cost and the largest wind power utilization rate. Based on prediction of thermoelectric load and wind power, the operation economy of the system and wind power accommodation level are improved with the cooperation of electric heat storage and pumped storage in regulation capacity. The second level coordinated control stabilizes wind power real time fluctuations by cooperating electric heat storage and pumped storage in control speed. The example results of actual wind farms in Jiuquan, Gansu verifies the feasibility and effectiveness of the proposed coordinated control strategy.
文摘We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode. The state of charge (H2 frication in cathode) effectively enhances the open circuit voltages (OCVs) while the system gas pressure in electrodes also increases the OCVs. On the other hand, a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations. With the aid of recycled system heat, the roundtrip efficiency reaches as high as 92% for the repeated electricity storage and generation.
文摘This study was carried out to determine the thermo-physical properties of rubber seed in the moisture range of 9.1%to 14.8%(w.b.).The length,width,thickness,measured surface area,bulk density and true density increased with increasing moisture content with high coefficients of determination(significant at p<0.05).Their optimum values at 14.8%moisture content were 17.00 mm,11.94 mm,8.26 mm,285.20 mm^(2),295.00 kg/m^(3) and 470.67 kg/m^(3),respectively.The angle of repose increased as moisture content increased with low coefficient of determination and has optimum value of 28.81°at 14.8%moisture content.The specific heat capacity and thermal conductivity decreased linearly while thermal diffusivity increased exponentially with an increase in moisture content(significant at p<0.05).The optimum values of specific heat capacity,thermal conductivity and diffusivity at 14.8%moisture content were 55.84 kJ/(kg.K),0.032 W/(m.K)and 1.93×10^(-9) m^(2)/s,respectively.The results are essential in the design of storage structure for rubber seed.
基金supported by the Science and Technology Project of China Electric Power Research Institute,Research on 1200 kV DC Voltage Proportional Metering Technology with Weak Environmental Sensitivity and Development of Standard Devices(JL83-21-002).
文摘Self-heating and electric field distribution are the primary factors affecting the accuracy of the Ultra High Voltage Direct Current(UHVDC)resistive divider.Reducing the internal temperature rise of the voltage divider caused by self-heating,reducing the maximum electric field strength of the voltage divider,and uniform electric field distribution can effectively improve the UHVDC resistive divider’s accuracy.In this paper,thermal analysis and electric field distribution optimization design of 1200 kV UHVDC resistive divider are carried out:(1)Using the proposed iterative algorithm,the heat dissipation and temperature distribution of the high voltage DC resistive divider are studied,and the influence of the ambient temperature and the power of the divider on the temperature of the insulating medium of the divider is analyzed;(2)Established the finite element models of 1200 kV and 2×600 kV DC resistive dividers,analyzed the influence of the size of the grading ring and the installation position on the maximum electric field strength of the voltage divider,and calculated the impact of the shielding resistor layer on the vicinity of the measuring resistor layer.The research indicates that:(1)The temperature of the insulating medium is linearly related to the horsepower of the voltage divider and the ambient temperature;(2)After the optimized design of the electric field,the maximum electric field strength of the 1200 kV DC resistive divider is reduced to 1471 V/mm,which is about 24% lower than that of the unoptimized design;(3)Installing the shielding resistor layer can significantly improve the electric field near the measuring resistor layer.This paper has an important reference function for improving the accuracy of the UHVDC resistive divider.
文摘为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。