Zonal heat advection (ZHA) plays an important role in the variability of the thermal structure in the tropical Pacific Ocean, especially in the western Pacific warm pool (WPWP). Using the Simple Ocean Data Assimil...Zonal heat advection (ZHA) plays an important role in the variability of the thermal structure in the tropical Pacific Ocean, especially in the western Pacific warm pool (WPWP). Using the Simple Ocean Data Assimilation (SODA) Version 2.02/4 for the period 1958-2007, this paper presents a detailed analysis of the climatological and seasonal ZHA in the tropical Pacific Ocean. Climatologically, ZHA shows a zonal- band spatial pattern associated with equatorial currents and contributes to forming the irregular eastern boundary of the WPWP (EBWP). Seasonal variation of ZHA with a positive peak from February to July is most prominent in the Nifio3.4 region, where the EBWP is located. The physical mechanism of the seasonal cycle in this region is examined. The mean advection of anomalous temperature, anomalous advection of mean temperature and eddy advection account for 31%, 51%, and 18% of the total seasonal variations, respectively. This suggests that seasonal changes of the South Equatorial Current induced by variability of the trade winds are the dominant contributor to the anomalous advection of mean temperature and hence, the seasonality of ZHA. Heat budget analysis shows that ZHA and surface heat flux make comparable contributions to the seasonal heat variation in the Nifio3.4 region, and that ZHA cools the upper ocean throughout the calendar year except in late boreal spring. The connection between ZHA and EBWP is further explored and a statistical relationship between EBWP, ZHA and surface heat flux is established based on least squares fitting.展开更多
The latest available data for mean annual air temperature at sites away from the Arctic coast in both Alaska and the Yukon Territory show no significant warming in the last 30-50 years. However, around the Arctic coas...The latest available data for mean annual air temperature at sites away from the Arctic coast in both Alaska and the Yukon Territory show no significant warming in the last 30-50 years. However, around the Arctic coast of northwest North America centered on Prudhoe Bay, the weather stations show significant warming of both the air and the ocean water, resulting in substantial losses in sea ice west of Prudhoe Bay. These changes appeared shortly after the commencement of shipment of oil through the Trans-Alaska Pipeline in 1977, but have now reached a quasi-stable thermal state. Since more than 17 trillion barrels of oil have passed through the pipeline after being cooled by the adjacent air, which in turn, can then result in the melting of the adjacent sea ice, there appears to be a very strong relationship between these events, and a marked lack of correlation with the changes of the content of greenhouse gases in the atmosphere. This contrasts with the IPCC interpretation of the available climatic data, which assumes that the maximum climatic warming at Prudhoe Bay is typical of the entire region and is the result of increasing greenhouse gases. Engineers need to consider heat advection by oil or gas from underground when designing pipeline facilities, and to take account of the potential environmental con-sequences that they may cause.展开更多
Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surfac...Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surface energy balance over a complex underlying surface,this paper calculates the soil heat storage and vertical sensible heat advection,analyzes their contributions to the surface energy imbalance,and discusses the mechanism by which the vertical velocity and temperature gradient in the surface layer affect the vertical sensible heat advection transfer.We found that the vertical velocity in the surface layer provides the necessary dynamic power for vertical sensible heat advection,and a relatively strong temperature gradient is the energy source generating vertical sensible heat advection.Under an ascending condition,the effect of vertical sensible heat advection on the surface energy budget is more obvious.It is also found that when the soil heat storage term and the vertical sensible heat advection term are added to the energy balance equation,the imbalance significantly improves.The peak of average diurnal residuals decreases from 125.1 to 41.5 W m-2,the daily average absolute value of residuals falls from 59.0 to 26.4 W m-2,and the surface energy balance closure increases from 78.4% to 94.0%.展开更多
The present climate simulation and future projection of the Eastern Subtropical Mode Water (ESTMW) in the North Pacific are investigated based on the Geophysical Fluid Dynamics Laboratory Earth System Model (GFDL-E...The present climate simulation and future projection of the Eastern Subtropical Mode Water (ESTMW) in the North Pacific are investigated based on the Geophysical Fluid Dynamics Laboratory Earth System Model (GFDL-ESM2M). Spatial patterns of the mixed layer depth (MLD) in the eastern subtropical North Pacific and the ESTMW are well simulated using this model. Compared with historical simulation, the ESTMW is produced at lighter isopycnal surfaces and its total volume is decreased in the RCP8.5 runs, because the subduction rate of the ESTMW decreases by 0.82×10?6 m/s during February–March. In addition, it is found that the lateral induction decreasing is approximately four times more than the Ekman pumping, and thus it plays a dominant role in the decreased subduction rate associated with global warming. Moreover, the MLD during February–March is banded shoaling in response to global warming, extending northeastward from the east of the Hawaii Islands (20°N, 155°W) to the west coast of North America (30°N, 125°W), with a max-imum shoaling of 50 m, and then leads to the lateral induction reduction. Meanwhile, the increased north-eastward surface warm current to the east of Hawaii helps strengthen of the local upper ocean stratification and induces the banded shoaling MLD under warmer climate. This new finding indicates that the ocean surface currents play an important role in the response of the MLD and the ESTMW to global warming.展开更多
Using the observations from ICOADS datasets and contemporaneous NCEP/NCAR reanalysis datasets during 1960-2002,the study classifies the airflows in favor of sea fog over the Huanghai (Yellow) Sea in boreal spring (...Using the observations from ICOADS datasets and contemporaneous NCEP/NCAR reanalysis datasets during 1960-2002,the study classifies the airflows in favor of sea fog over the Huanghai (Yellow) Sea in boreal spring (April-May) with the method of trajectory analysis,and analyzes the changes of proportions of warm and cold sea fogs along different paths of airflow.According to the heat balance equation,we investigate the relationships between the marine meteorological conditions and the proportion of warm and cold sea fog along different airflow paths.The major results are summarized as follows.(1) Sea fogs over the Huanghai Sea in spring are not only warm fog but also cold fog.The proportion of warm fog only accounts for 44% in April,while increases as high as 57% in May.(2) Four primary airflow paths leading to spring sea fog are identified.They are originated from the northwest,east,southeast and southwest of the Huanghai Sea,respectively.The occurrence ratios of the warm sea fog along the east and southeast airflow paths are high of 55% and 70%,while these along the southwest and northwest airflow paths are merely 17.9% and 50%.(3) The key physical processes governing the warm/cold sea fog are heat advection transport,longwave radiation cooling at fog top,solar shortwave warming and latent heat flux between airsea interfaces.(4) The characteristics of sea fog along the four airflow paths relate closely to the conditions of water vapor advection,and the vertical distribution of relative humidity.展开更多
The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. Th...The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. The SSHO4 is at southwest of Dongsha Island, and is characterized by a wavelength of-600 km and a southwestward phase speed of-0.1 m/s. Crossing the climatological background SST front, geostrophic currents corresponding to the SSHO4 generally induce sea surface temperature (SST) "tongues" during January-March. The cold and warm SST tongues appear southwest of cyclonic and anticyclonic eddies, respectively. The distance between the warm and cold SST tongues is about half the wavelength of the SSHO4. The geostrophic currents play an important role in lateral mixing, as manifested by the SST tongue phenomena in the NSCS.展开更多
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB417401)the CAS Strategic Priority Research Program(No.XDA10010104)
文摘Zonal heat advection (ZHA) plays an important role in the variability of the thermal structure in the tropical Pacific Ocean, especially in the western Pacific warm pool (WPWP). Using the Simple Ocean Data Assimilation (SODA) Version 2.02/4 for the period 1958-2007, this paper presents a detailed analysis of the climatological and seasonal ZHA in the tropical Pacific Ocean. Climatologically, ZHA shows a zonal- band spatial pattern associated with equatorial currents and contributes to forming the irregular eastern boundary of the WPWP (EBWP). Seasonal variation of ZHA with a positive peak from February to July is most prominent in the Nifio3.4 region, where the EBWP is located. The physical mechanism of the seasonal cycle in this region is examined. The mean advection of anomalous temperature, anomalous advection of mean temperature and eddy advection account for 31%, 51%, and 18% of the total seasonal variations, respectively. This suggests that seasonal changes of the South Equatorial Current induced by variability of the trade winds are the dominant contributor to the anomalous advection of mean temperature and hence, the seasonality of ZHA. Heat budget analysis shows that ZHA and surface heat flux make comparable contributions to the seasonal heat variation in the Nifio3.4 region, and that ZHA cools the upper ocean throughout the calendar year except in late boreal spring. The connection between ZHA and EBWP is further explored and a statistical relationship between EBWP, ZHA and surface heat flux is established based on least squares fitting.
文摘The latest available data for mean annual air temperature at sites away from the Arctic coast in both Alaska and the Yukon Territory show no significant warming in the last 30-50 years. However, around the Arctic coast of northwest North America centered on Prudhoe Bay, the weather stations show significant warming of both the air and the ocean water, resulting in substantial losses in sea ice west of Prudhoe Bay. These changes appeared shortly after the commencement of shipment of oil through the Trans-Alaska Pipeline in 1977, but have now reached a quasi-stable thermal state. Since more than 17 trillion barrels of oil have passed through the pipeline after being cooled by the adjacent air, which in turn, can then result in the melting of the adjacent sea ice, there appears to be a very strong relationship between these events, and a marked lack of correlation with the changes of the content of greenhouse gases in the atmosphere. This contrasts with the IPCC interpretation of the available climatic data, which assumes that the maximum climatic warming at Prudhoe Bay is typical of the entire region and is the result of increasing greenhouse gases. Engineers need to consider heat advection by oil or gas from underground when designing pipeline facilities, and to take account of the potential environmental con-sequences that they may cause.
基金supported by the National Natural Science Foundation of China (Grant No.40830597)the Public Welfare Research Project of China (Grant No.GYHY200806021)
文摘Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surface energy balance over a complex underlying surface,this paper calculates the soil heat storage and vertical sensible heat advection,analyzes their contributions to the surface energy imbalance,and discusses the mechanism by which the vertical velocity and temperature gradient in the surface layer affect the vertical sensible heat advection transfer.We found that the vertical velocity in the surface layer provides the necessary dynamic power for vertical sensible heat advection,and a relatively strong temperature gradient is the energy source generating vertical sensible heat advection.Under an ascending condition,the effect of vertical sensible heat advection on the surface energy budget is more obvious.It is also found that when the soil heat storage term and the vertical sensible heat advection term are added to the energy balance equation,the imbalance significantly improves.The peak of average diurnal residuals decreases from 125.1 to 41.5 W m-2,the daily average absolute value of residuals falls from 59.0 to 26.4 W m-2,and the surface energy balance closure increases from 78.4% to 94.0%.
基金The National Basic Research Program(973 Program)of China under contract No.2012CB955603the National Natural Science Foundation of China under contract Nos 41176006,41221063 and U1406401
文摘The present climate simulation and future projection of the Eastern Subtropical Mode Water (ESTMW) in the North Pacific are investigated based on the Geophysical Fluid Dynamics Laboratory Earth System Model (GFDL-ESM2M). Spatial patterns of the mixed layer depth (MLD) in the eastern subtropical North Pacific and the ESTMW are well simulated using this model. Compared with historical simulation, the ESTMW is produced at lighter isopycnal surfaces and its total volume is decreased in the RCP8.5 runs, because the subduction rate of the ESTMW decreases by 0.82×10?6 m/s during February–March. In addition, it is found that the lateral induction decreasing is approximately four times more than the Ekman pumping, and thus it plays a dominant role in the decreased subduction rate associated with global warming. Moreover, the MLD during February–March is banded shoaling in response to global warming, extending northeastward from the east of the Hawaii Islands (20°N, 155°W) to the west coast of North America (30°N, 125°W), with a max-imum shoaling of 50 m, and then leads to the lateral induction reduction. Meanwhile, the increased north-eastward surface warm current to the east of Hawaii helps strengthen of the local upper ocean stratification and induces the banded shoaling MLD under warmer climate. This new finding indicates that the ocean surface currents play an important role in the response of the MLD and the ESTMW to global warming.
基金supported in part by the National Natural Science Foundation of China under contract Nos 40675013 and 40906010the China Meteorological Administration project for popularizing new techniques under contract No.CMATG2007M23+1 种基金the scientific and technological planning project from Guangdong Province under contract No.2006B37202005The work of Wang Xin is supported by City University of Hong Kong Research Scholarship Enhancement Scheme and the City University of Hong Kong Strategic Research Grants 7002329
文摘Using the observations from ICOADS datasets and contemporaneous NCEP/NCAR reanalysis datasets during 1960-2002,the study classifies the airflows in favor of sea fog over the Huanghai (Yellow) Sea in boreal spring (April-May) with the method of trajectory analysis,and analyzes the changes of proportions of warm and cold sea fogs along different paths of airflow.According to the heat balance equation,we investigate the relationships between the marine meteorological conditions and the proportion of warm and cold sea fog along different airflow paths.The major results are summarized as follows.(1) Sea fogs over the Huanghai Sea in spring are not only warm fog but also cold fog.The proportion of warm fog only accounts for 44% in April,while increases as high as 57% in May.(2) Four primary airflow paths leading to spring sea fog are identified.They are originated from the northwest,east,southeast and southwest of the Huanghai Sea,respectively.The occurrence ratios of the warm sea fog along the east and southeast airflow paths are high of 55% and 70%,while these along the southwest and northwest airflow paths are merely 17.9% and 50%.(3) The key physical processes governing the warm/cold sea fog are heat advection transport,longwave radiation cooling at fog top,solar shortwave warming and latent heat flux between airsea interfaces.(4) The characteristics of sea fog along the four airflow paths relate closely to the conditions of water vapor advection,and the vertical distribution of relative humidity.
基金Supported by the Ministry of Science and Technology of China(National Basic Research Program of China(No.2012CB955602))the National Key Program for Developing Basic Science(No.2010CB428904)+1 种基金the National Natural Science Foundation of China(No.40830106)a China Postdoctoral Science Foundation Funded Project(No.20100471573)
文摘The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. The SSHO4 is at southwest of Dongsha Island, and is characterized by a wavelength of-600 km and a southwestward phase speed of-0.1 m/s. Crossing the climatological background SST front, geostrophic currents corresponding to the SSHO4 generally induce sea surface temperature (SST) "tongues" during January-March. The cold and warm SST tongues appear southwest of cyclonic and anticyclonic eddies, respectively. The distance between the warm and cold SST tongues is about half the wavelength of the SSHO4. The geostrophic currents play an important role in lateral mixing, as manifested by the SST tongue phenomena in the NSCS.