期刊文献+
共找到9,636篇文章
< 1 2 250 >
每页显示 20 50 100
Pre‑hatch thermal manipulation of embryos and post‑hatch baicalein supplementation mitigated heat stress in broiler chickens 被引量:1
1
作者 Sadid Al Amaz Ajay Chaudhary +2 位作者 Prem Lal Mahato Rajesh Jha Birendra Mishra 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期1071-1085,共15页
Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some succes... Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some success in mitigating heat stress(HS)in broilers.Developing novel HS mitigation strategies for sustaining broiler production is critically needed.This study investigated the effects of pre-hatch thermal manipulation(TM)and post-hatch baica-lein supplementation on growth performance and health parameters in heat-stressed broilers.Results Six hundred fertile Cobb 500 eggs were incubated for 21 d.After candling on embryonic day(ED)10,238 eggs were thermally manipulated at 38.5℃ with 55%relative humidity(RH)from ED 12 to 18,then transferred to the hatcher(ED 19 to 21,standard temperature)and 236 eggs were incubated at a controlled temperature(37.5℃)till hatch.After hatch,180-day-old chicks from both groups were raised in 36 pens(n=10 birds/pen,6 replicates per treatment).The treatments were:1)Control,2)TM,3)control heat stress(CHS),4)thermal manipulation heat stress(TMHS),5)control heat stress supplement(CHSS),and 6)thermal manipulation heat stress supplement(TMHSS).All birds were raised under the standard environment for 21 d,followed by chronic heat stress from d 22 to 35(32–33℃ for 8 h)in the CHS,TMHS,CHSS,and TMHSS groups.A thermoneutral(22–24℃)environment was maintained in the Control and TM groups.RH was constant(50%±5%)throughout the trial.All the data were analyzed using one-way ANOVA in R and GraphPad software at P<0.05 and are presented as mean±SEM.Heat stress significantly decreased(P<0.05)the final body weight and ADG in CHS and TMHS groups compared to the other groups.Embryonic TM significantly increased(P<0.05)the expression of heat shock protein-related genes(HSP70,HSP90,and HSPH1)and antioxidant-related genes(GPX1 and TXN).TMHS birds showed a significant increment(P<0.05)in total cecal volatile fatty acid(VFA)concentration compared to the CHS birds.The cecal microbial analysis showed significant enrichment(P<0.05)in alpha and beta diversity and Coprococcus in the TMHSS group.Conclusions Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens’growth performance,upregulate favorable gene expression,increase VFA produc-tion,and promote gut health by increasing beneficial microbial communities. 展开更多
关键词 BAICALEIN Growth performance Gut microbiota heat stress Thermal manipulation
下载PDF
Optimal synthesis of heat-integrated distillation configurations using the two-column superstructure 被引量:1
2
作者 Xiaodong Zhang Lu Jin Jinsheng Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期238-249,共12页
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol... In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance. 展开更多
关键词 SUPERSTRUCTURE Process synthesis heat integration Simulation-based optimization Industrial organosilicon separation
下载PDF
Time-lagged Effects of the Spring Atmospheric Heat Source over the Tibetan Plateau on Summer Precipitation in Northeast China during 1961–2020:Role of Soil Moisture 被引量:1
3
作者 Yizhe HAN Dabang JIANG +2 位作者 Dong SI Yaoming MA Weiqiang MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1527-1538,共12页
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N... The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC. 展开更多
关键词 Tibetan Plateau atmospheric heat source Northeast China summer precipitation soil moisture
下载PDF
A coupled thermo-mechanical peridynamic model for fracture behavior of granite subjected to heating and water-cooling processes 被引量:1
4
作者 Luming Zhou Zhende Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2006-2018,共13页
Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The... Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The laboratory uniaxial compression experiments were also conducted.Then,a coupled thermo-mechanical ordinary state-based peridynamic(OSB-PD)model and corresponding numerical scheme were developed to simulate the damage of rocks after the heating and cooling processes,and the change of crack evolution process was predicted.The results demonstrate that elevated heating temperatures exacerbate the thermal damage to the specimens,resulting in a decrease in peak strength and an increase in ductility of granite.The escalating occurrence of thermal-induced cracks significantly affects the crack evolution process during the loading phase.The numerical results accurately reproduce the damage and fracture characteristics of the granite under different final heating temperatures(FHTs),which are consistent with the test results in terms of strength,crack evolution process,and failure mode. 展开更多
关键词 Peridynamics(PD) GRANITE heating and cooling Damage and fracture Uniaxial compression
下载PDF
Influence of heat treatment on microstructure,mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion 被引量:1
5
作者 Chenrong Ling Qiang Li +6 位作者 Zhe Zhang Youwen Yang Wenhao Zhou Wenlong Chen Zhi Dong Chunrong Pan Cijun Shuai 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期258-275,共18页
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe... Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility. 展开更多
关键词 laser-beam powder bed fusion WE43 alloys heat treatment mechanical performance biodegradation behavior
下载PDF
The regulation of ferrocene-based catalysts on heat transfer in highpressure combustion of ammonium perchlorate/hydroxyl-terminated polybutadiene/aluminum composite propellants 被引量:1
6
作者 Jinchao Han Songqi Hu Linlin Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期174-186,共13页
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i... The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures. 展开更多
关键词 AP/HTPB/Al propellants heat transfer High-pressure combustion Ferrocene-based catalysts Pressure exponent
下载PDF
Optimum Profiles of Endwall Contouring for Enhanced Net Heat Flux Reduction and Aerodynamic Performance 被引量:1
7
作者 Arjun K S Tide P S Biju N 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期80-92,共13页
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish... Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization. 展开更多
关键词 endwall contouring turbine VANE heat transfer phantom cooling coolant injection net heat flux reduction aerodynamic performance
下载PDF
Low-energy-consumption temperature swing system for CO_(2) capture by combining passive radiative cooling and solar heating 被引量:1
8
作者 Ying-Xi Dang Peng Tan +3 位作者 Bin Hu Chen Gu Xiao-Qin Liu Lin-Bing Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期507-515,共9页
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo... Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption. 展开更多
关键词 CO_(2)capture Solar heating Passive radiative cooling Temperature swing adsorption
下载PDF
A particle-resolved heat-particle-fluid coupling model by DEM-IMB-LBM 被引量:1
9
作者 Ming Xia Jinlong Fu +2 位作者 Y.T.Feng Fengqiang Gong Jin Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2267-2281,共15页
Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate parti... Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate particle-fluid interaction problems involving heat transfer at the grain level.In this extended technique,an immersed moving boundary(IMB)scheme is used to couple the discrete element method(DEM)and lattice Boltzmann method(LBM),while a recently proposed Dirichlet-type thermal boundary condition is also adapted to account for heat transfer between fluid phase and solid particles.The resulting DEM-IBM-LBM model is robust to simulate moving curved boundaries with constant temperature in thermal flows.To facilitate the understanding and implementation of this coupled model for non-isothermal problems,a complete list is given for the conversion of relevant physical variables to lattice units.Then,benchmark tests,including a single-particle sedimentation and a two-particle drafting-kissing-tumbling(DKT)simulation with heat transfer,are carried out to validate the accuracy of our coupled technique.To further investigate the role of heat transfer in particle-laden flows,two multiple-particle problems with heat transfer are performed.Numerical examples demonstrate that the proposed coupling model is a promising high-resolution approach for simulating the heat-particle-fluid coupling at the grain level. 展开更多
关键词 Particle-fluid interaction heat transfer Discrete element method(DEM) Lattice Boltzmann method(LBM) Dirichlet-type thermal boundary Direct numerical simulation
下载PDF
Observing the air-sea turbulent heat flux on the trajectory of tropical storm Danas
10
作者 Xuehan XIE Xiangzhou SONG +3 位作者 Marilena OLTMANNS Yangang LI Qifeng QIAN Zexun WEI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1425-1437,共13页
Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of t... Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m 2 for ERA 5,respectively,and to 39.4 and 12.5 W/m 2 for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage. 展开更多
关键词 tropical cyclone(TC) air-sea turbulent heat flux(THF) latent heat flux sensible heat flux buoy observation reanalysis product
下载PDF
Operation optimization of prefabricated light modular radiant heating system:Thermal resistance analysis and numerical study
11
作者 LI Yao HU Ru-kun +4 位作者 XIN Li XUE Jie HUANG Fei XIA Jian-wei YANG Xiao-hu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1983-1997,共15页
The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,... The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system. 展开更多
关键词 radiant heating system thermal resistance analysis simplified model numerical simulation heat flux temperatur
下载PDF
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
12
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions Two-phase flow MULTI-COMPONENT heat and mass transfer
下载PDF
A comprehensive review on microchannel heat sinks for electronics cooling
13
作者 Zhi-Qiang Yu Mo-Tong Li Bing-Yang Cao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期133-162,共30页
The heat generation of electronic devices is increasing dramatically,which causes a serious bottleneck in the thermal management of electronics,and overheating will result in performance deterioration and even device ... The heat generation of electronic devices is increasing dramatically,which causes a serious bottleneck in the thermal management of electronics,and overheating will result in performance deterioration and even device damage.With the development of micro-machining technologies,the microchannel heat sink(MCHS)has become one of the best ways to remove the considerable amount of heat generated by high-power electronics.It has the advantages of large specific surface area,small size,coolant saving and high heat transfer coefficient.This paper comprehensively takes an overview of the research progress in MCHSs and generalizes the hotspots and bottlenecks of this area.The heat transfer mechanisms and performances of different channel structures,coolants,channel materials and some other influencing factors are reviewed.Additionally,this paper classifies the heat transfer enhancement technology and reviews the related studies on both the single-phase and phase-change flow and heat transfer.The comprehensive review is expected to provide a theoretical reference and technical guidance for further research and application of MCHSs in the future. 展开更多
关键词 microchannel heat sink thermal management of electronics microscale heat transfer heat transfer enhancement
下载PDF
Heating of nanoparticles and their environment by laser radiation and applications
14
作者 Victor K.Pustovalov 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期78-115,共38页
This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the ... This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles. 展开更多
关键词 NANOPARTICLES LASER heatING MODELING Nanothermometry Applications
下载PDF
Ion heat transport in electron cyclotron resonance heated L-mode plasma on the T-10 tokamak
15
作者 V.A.KRUPIN M.R.NURGALIEV +9 位作者 A.R.NEMETS I.A.ZEMTSOV S.D.SUNTSOV T.B.MYALTON D.S.SERGEEV N.A.SOLOVEV D.V.SARYCHEV D.V.RYJAKOV S.N.TUGARINOV N.N.NAUMENKO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期52-60,共9页
Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical... Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical heat conductivity shows that in ECRH plasmas the calculated ion temperature could be overestimated, so an increase of anomalous ion heat transport is required. To study this effect two scans are presented: over the EC resonance position and over the ECRH power. The EC resonance position varies from the high-field side to the low-field side by variation of the toroidal magnetic field. The scan over the heating power is presented with on-axis and mixed ECRH regimes. Discharges with high anomalous ion heat transport are obtained in all considered regimes. In these discharges the power balance ion heat conductivity exceeds the neoclassical level by up to 10 times. The high ion heat transport regimes are distinguished by three parameters: the ratio Te/Ti, the normalized electron density gradient R/■, and the ion–ion collisionality νii~*. The combination of high Te/Ti, high νii~*, and R/■=6-10 results in values of normalized anomalous ion heat fluxes up to 10 times higher than in the low transport scenario. 展开更多
关键词 TOKAMAK L-mode electron cyclotron resonance heating ion heat transport
下载PDF
Paraffin–CaCl_(2)·6H_(2)O dosage effects on the strength and heat transfer characteristics of cemented tailings backfill
16
作者 Hai Li Aibing Jin +2 位作者 Shuaijun Chen Yiqing Zhao You Ju 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期60-70,共11页
The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storag... The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency The addition of phase change materials (PCMs) to filling slurry and the use of the cold storage function of these materials to reduce downhole temperatures is an effective approach to alleviate the aforementioned problem.Paraffin–CaCl_(2)·6H_(2)O composite PCM was prepared in the laboratory.The composition,phase change latent heat,thermal conductivity,and cemented tailing backfill (CTB) compressive strength of the new material were studied.The heat transfer characteristics and endothermic effect of the PCM were simulated using Fluent software.The results showed the following:(1) The new paraffin–CaCl_(2)·6H_(2)O composite PCM improved the thermal conductivity of native paraffin while avoiding the water solubility of CaCl_(2)·6H_(2)O.(2) The calculation formula of the thermal conductivity of CaCl_(2)·6H_(2)O combined with paraffin was deduced,and the reasons were explained in principle.(3) The“enthalpy–mass scale model”was applied to calculate the phase change latent heat of nonreactive composite PCMs.(4)The addition of the paraffin–CaCl_(2)·6H_(2)O composite PCM reduced the CTB strength but increased its heat absorption capacity.This research can give a theoretical foundation for the use of heat storage backfill in green mines. 展开更多
关键词 paraffin–CaCl_(2)·6H_(2)O heat transfer simulation heat calculation phase change material-based backfill latent heat of formula
下载PDF
Interface property of dissimilar Ti-6Al-4V/AA1050 composite laminate made by non-equal channel lateral co-extrusion and heat treatment
17
作者 Juan Liao Mengmeng Tian Xin Xue 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期197-208,共12页
The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel la... The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel lateral co-extrusion process.The microstructural evolution and growth mechanism in the diffusion layer were discussed further to optimize the bonding quality by appropriately adjusting process parameters.Scanning electron microscopes(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD)were used to characterize interfacial diffusion layers.The shear test was used to determine the mechanical properties of the interfacial diffusion layer.The experimental results indicate that it is possible to co-extrusion Ti-6Al-4V/AA1050 compound profiles using non-equal channel lateral co-extrusion.Different heat treatment processes affect the thickness of the diffusion layer.When the temperature and time of heat treatment increase,the thickness of the reaction layers increases dramatically.Additionally,the shear strength of the Ti-6Al-4V/AA1050 composite interface is proportional to the diffusion layer thickness.It is observed that a medium interface thickness results in superior mechanical performance when compared to neither a greater nor a lesser interface thickness.Microstructural characterization of all heat treatments reveals that the only intermetallic compound observed in the diffusion layers is TiAl_(3).Due to the inter-diffusion of Ti and Al atoms,the TiAl_(3) layer grows primarily at AA1050/TiAl_(3) interfaces. 展开更多
关键词 Shear strength CO-EXTRUSION heat treatment Microstructure Intermetallic compounds
下载PDF
Elevated brain temperature under severe heat exposure impairs cortical motor activity and executive function
18
作者 Xiang Ren Tan Mary C.Stephenson +4 位作者 Sharifah Badriyah Alhadad Kelvin W.Z.Loh Tuck Wah Soong Jason K.W.Lee Ivan C.C.Low 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第2期233-244,共12页
Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stres... Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stress affects brain physiology and function.Methods:Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures(T_(re))attained 39.5℃,inducing exertional or passive hyperthermia,respectively.In a separate trial,blended ice was ingested before and during exercise as a cooling strategy.Data were compared to a control condition with seated rest(normothermic).Brain temperature(T_(br)),cerebral perfusion,and task-based brain activity were assessed using magnetic resonance imaging techniques.Results:T_(br)in motor cortex was found to be tightly regulated at rest(37.3℃±0.4℃(mean±SD))despite fluctuations in T_(re).With the development of hyperthermia,T_(br)increases and dovetails with the rising T_(re).Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks,implying a reduced central motor drive in hyperthermic participants(T_(re)=38.5℃±0.1℃).Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia.Executive function was poorer under a passive hyperthermic state,and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex.Conversely,ingestion of blended ice before and during exercise alleviated the rise in both T_(re)and T_(bc)and mitigated heat-related neural perturbations.Conclusion:Severe heat exposure elevates T_(br),disrupts motor cortical activity and executive function,and this can lead to impairment of physical and cognitive performance. 展开更多
关键词 Brain functional activity COGNITION heat stress HYPERTHERMIA Motor function
下载PDF
Effects of the Water-Cement Ratio and the Molding Temperature on the Hydration Heat of Cement
19
作者 代金鹏 HE Jie +1 位作者 WANG Qicai LOU Xuyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期990-998,共9页
The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and... The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and 0.45,and the molding temperature was specified at 10 and 20℃.The experimental results show that,as the water-binder ratio increases,the value of the second temperature peak on the temperature curve of the cement paste decreases,and the age at which the peak appears is delayed.The higher the water-cement ratio,the higher the hydration heat release in the early period of cement hydration,but this trend reverses in the late period.There are intersection points of the total hydration heat curve of the cement pastes under the influence of the water-cement ratio,and this law can be observed at both molding temperatures.With the increase in the molding temperature,the age of the second temperature peak on the temperature curve of the cement paste will advance,but the temperature peak will decrease.The higher the molding temperature,the earlier the acceleration period of the cement hydration began,and the larger the hydration heat of the cement in the early stage,but the smaller the total heat in the late period.A subsection function calculation model of the hydration heat,which was based on the existing models,was proposed in order to predict the heat of the hydration of the concrete. 展开更多
关键词 semi-adiabatic calorimetry hydration heat water-cement ratio molding temperature MODELING
下载PDF
An improved analysis method for assessing the nuclear-heating impact on the stability of toroidal field magnets in fusion reactors
20
作者 Yu-Dong Lu Jin-Xing Zheng +7 位作者 Xu-Feng Liu Huan Wu Jian Ge Kun Xu Ming Li Hai-Yang Liu Lei Zhu Fei Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期163-176,共14页
The superconducting magnet system of a fusion reactor plays a vital role in plasma confinement,a process that can be dis-rupted by various operational factors.A critical parameter for evaluating the temperature margin... The superconducting magnet system of a fusion reactor plays a vital role in plasma confinement,a process that can be dis-rupted by various operational factors.A critical parameter for evaluating the temperature margin of superconducting magnets during normal operation is the nuclear heating caused by D-T neutrons.This study investigates the impact of nuclear heat-ing on a superconducting magnet system by employing an improved analysis method that combines neutronics and thermal hydraulics.In the magnet system,toroidal field(TF)magnets are positioned closest to the plasma and bear the highest nuclear-heat load,making them prime candidates for evaluating the influence of nuclear heating on stability.To enhance the modeling accuracy and facilitate design modifications,a parametric TF model that incorporates heterogeneity is established to expedite the optimization design process and enhance the accuracy of the computations.A comparative analysis with a homogeneous TF model reveals that the heterogeneous model improves accuracy by over 12%.Considering factors such as heat load,magnetic-field strength,and cooling conditions,the cooling circuit facing the most severe conditions is selected to calculate the temperature of the superconductor.This selection streamlines the workload associated with thermal-hydraulic analysis.This approach enables a more efficient and precise evaluation of the temperature margin of TF magnets.Moreover,it offers insights that can guide the optimization of both the structure and cooling strategy of superconducting magnet systems. 展开更多
关键词 Superconducting magnet Nuclear heating NEUTRONICS Thermal hydraulics
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部