期刊文献+
共找到296篇文章
< 1 2 15 >
每页显示 20 50 100
Comparative study of univariate and multivariate strategy for short-term forecasting of heat demand density:Exploring single and hybrid deep learning models
1
作者 Sajad Salehi Miroslava Kavgic +1 位作者 Hossein Bonakdari Luc Begnoche 《Energy and AI》 EI 2024年第2期53-68,共16页
Accurate short-term forecasting of heating energy demand is needed for achieving optimal building energy management,cost savings,environmental sustainability,and responsible energy consumption.Furthermore,short-term h... Accurate short-term forecasting of heating energy demand is needed for achieving optimal building energy management,cost savings,environmental sustainability,and responsible energy consumption.Furthermore,short-term heating energy prediction contributes to zero-energy building performance in cold climates.Given the critical importance of short-term forecasting in heating energy management,this study evaluated six prevalent deep-learning algorithms to predict energy load,including single and hybrid models.The overall best-performing predictors were hybrid models using Convolutional Neural Networks,regardless of whether they were multivariate or univariate.Nevertheless,while the multivariate models performed better in the first hour,the univariate models often were more accurate in the final 24 h.Thus,the best-performing predictor of the first timestep was a multivariate hybrid Convolutional Neural Network–Recurrent Neural Network model with a coefficient of determination(R^(2))of 0.98 and the lowest mean absolute error.Yet,the best-performing predictor of the final timestep was the univariate hybrid model Convolutional Neural Network–Long Short-Term Memory with an R^(2)of 0.80.Also,the prediction accuracy of the best-performing multivariate hybrid models reduced faster per hour compared to the univariate models.These findings suggest that multivariate models may be better suited for early timestep predictions,while univariate models may be better suited for later time steps.Hence,combining the models can enhance accuracy at various timesteps for achieving high fidelity in forecasting and offering a comprehensive tool for energy management. 展开更多
关键词 Short-term heat demand forecasting Multiple-step output strategy Deep learning Cold climates Commercial buildings
原文传递
Sensitivity analysis to reduce duplicated features in ANN training for district heat demand prediction 被引量:2
2
作者 Si Chen Yaxing Ren +2 位作者 Daniel Friedrich Zhibin Yu James Yu 《Energy and AI》 2020年第2期63-73,共11页
Artificial neural network(ANN)has become an important method to model the nonlinear relationships between weather conditions,building characteristics and its heat demand.Due to the large amount of training data re-qui... Artificial neural network(ANN)has become an important method to model the nonlinear relationships between weather conditions,building characteristics and its heat demand.Due to the large amount of training data re-quired for ANN training,data reduction and feature selection are important to simplify the training.However,in building heat demand prediction,many weather-related input variables contain duplicated features.This paper develops a sensitivity analysis approach to analyse the correlation between input variables and to detect the variables that have high importance but contain duplicated features.The proposed approach is validated in a case study that predicts the heat demand of a district heating network containing tens of buildings at a university campus.The results show that the proposed approach detected and removed several unnecessary input variables and helped the ANN model to reduce approximately 20%training time compared with the traditional methods while maintaining the prediction accuracy.It indicates that the approach can be applied for analysing large num-ber of input variables to help improving the training efficiency of ANN in district heat demand prediction and other applications. 展开更多
关键词 Building heat demand prediction Statistical modelling Artificial neural network Sensitivity analysis Feature selection
原文传递
Space heating and hot water demand analysis of dwellings connected to district heating scheme in UK
3
作者 R.Burzynski M.Crane +1 位作者 R.Yao V.M.Becerra 《Journal of Central South University》 SCIE EI CAS 2012年第6期1629-1638,共10页
To achieve CO2 emissions reductions, the UK Building Regulations require developers of new residential buildings to calculate expected CO2 emissions arising from their energy consumption using a methodology such as St... To achieve CO2 emissions reductions, the UK Building Regulations require developers of new residential buildings to calculate expected CO2 emissions arising from their energy consumption using a methodology such as Standard Assessment Procedure (SAP 2005) or, more recently SAP 2009. SAP encompasses all domestic heat consumption and a limited proportion of the electricity consumption. However, these calculations are rarely verified with real energy consumption and related CO2 emissions. This work presents the results of an analysis based on weekly heat demand data for more than 200 individual fiats. The data were collected from a recently built residential development connected to a district heating network. A method for separating out the domestic hot water (DHW) use and space heating (SH) demand has been developed and these values are compared to the demand calculated using SAP 2005 and SAP 2009 methodologies. The analysis also shows the variation in DHW and SH consumption with size of flats and with tenure (privately owned or social housing). Evaluation of the space heating consumption also includes an estimate of the heating degree day (HDD) base temperature for each block of fiats and compares this to the average base temperature calculated using the SAP 2005 methodology. 展开更多
关键词 domestic hot water space heating energy consumption heat demand
下载PDF
Intelligent Agent-Based Architecture for Demand Side Management Considering Space Heating and Electric Vehicle Load
4
作者 Farhan H. Malik Mubbashir Ali Matti Lehtonen 《Engineering(科研)》 2014年第11期670-679,共10页
Contraction of resilience on generation side due to the introduction of inflexible renewable energy sources is demanding more elasticity on consumption side. It requires more intelligent systems to be implemented to m... Contraction of resilience on generation side due to the introduction of inflexible renewable energy sources is demanding more elasticity on consumption side. It requires more intelligent systems to be implemented to maintain power balance in the grid and to fulfill the consumer needs. This paper is concerned about the energy balance management of the system using intelligent agent-based architecture. The idea is to limit the peak power of each individual household for different defined time regions of the day according to power production during those time regions. Monte Carlo Simulation (MCS) has been employed to study the behavior of a particular number of households for maintaining the power balance based on proposed technique to limit the peak power for each household and even individual load level. Flexibility of two major loads i.e. heating load (heat storage tank) and electric vehicle load (battery) allows us to shift the peaks on demand side proportionally with the generation in real time. Different parameters related to heating and Electric Vehicle (EV) load e.g. State of Charge (SOC), storage capacities, charging power, daily usage, peak demand hours have been studied and a technique is proposed to mitigate the imbalance of power intelligently. 展开更多
关键词 demand Response (DR) ELECTRIC VEHICLES (EVs) heat Storage Smart Grids
下载PDF
Enhancing hourly heat demand prediction through artificial neural networks:A national level case study
5
作者 Meng Zhang Michael-Allan Millar +3 位作者 Si Chen Yaxing Ren Zhibin Yu James Yu 《Energy and AI》 EI 2024年第1期288-299,共12页
Meeting the goal of zero emissions in the energy sector by 2050 requires accurate prediction of energy consumption,which is increasingly important.However,conventional bottom-up model-based heat demand forecasting met... Meeting the goal of zero emissions in the energy sector by 2050 requires accurate prediction of energy consumption,which is increasingly important.However,conventional bottom-up model-based heat demand forecasting methods are not suitable for large-scale,high-resolution,and fast forecasting due to their complexity and the difficulty in obtaining model parameters.This paper presents an artificial neural network(ANN)model to predict hourly heat demand on a national level,which replaces the traditional bottom-up model based on extensive building simulations and computation.The ANN model significantly reduces prediction time and complexity by reducing the number of model input types through feature selection,making the model more realistic by removing non-essential inputs.The improved model can be trained using fewer meteorological data types and insufficient data,while accurately forecasting the hourly heat demand throughout the year within an acceptable error range.The model provides a framework to obtain accurate heat demand predictions for large-scale areas,which can be used as a reference for stakeholders,especially policymakers,to make informed decisions. 展开更多
关键词 heating demand in buildings National level forecast Feature selection Machine learning Artificial neural network
原文传递
Freezing on demand: A new concept for mine safety and energy savings in wet underground mines 被引量:4
6
作者 Mahmoud A.Alzoubi Ahmad Zueter +1 位作者 Aurelien Nie-Rouquette Agus P.Sasmito 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期621-627,共7页
The artificial ground freezing(AGF)systems are designed to operate continuously for an extended period of time to control the groundwater seepage and to strengthen the groundwater structure surrounding excavation area... The artificial ground freezing(AGF)systems are designed to operate continuously for an extended period of time to control the groundwater seepage and to strengthen the groundwater structure surrounding excavation areas.This mode of operation requires a massive amount of energy to sustain the thickness of the frozen body.Therefore,it is of great interest to propose new concepts to reduce energy consumption while providing sufficient structural stability and safe operation.This paper discusses the principle of the freezing on demand(FoD)by means of experiment and mathematical model.A lab-scale rig that mimics the AGF process is conceived and developed.The setup is equipped with more than 80 thermocouples,flow-meters,and advanced instrumentation system to analyze the performance of the AGF process under the FoD concept.A mathematical model has been derived,validated,and utilized to simulate the transient FoD concept.The results suggest that the overall energy saving notably depends on the coolant’s temperature;the energy saving increases while decreasing the coolant inlet temperature.Moreover,applying the FoD concept in an AGF system leads to a significant drop in energy consumption. 展开更多
关键词 Artificial ground FREEZING FREEZING on demand Energy SAVING CONJUGATE heat transfer Porous media
下载PDF
考虑阶梯式碳交易与电热需求响应的综合能源系统经济调度 被引量:1
7
作者 杨玉龙 王明伟 卢晓东 《电气应用》 2024年第5期74-85,共12页
在能源安全新战略背景下,推动可再生能源发展、降低碳排放将是未来发展趋势。为了消纳大规模风电的弃风功率以提升电网的调峰能力,首先考虑阶梯式碳交易机制,采用碳交易市场,利用碳交易价格达到控制碳排放的目的;其次基于分时电价形成... 在能源安全新战略背景下,推动可再生能源发展、降低碳排放将是未来发展趋势。为了消纳大规模风电的弃风功率以提升电网的调峰能力,首先考虑阶梯式碳交易机制,采用碳交易市场,利用碳交易价格达到控制碳排放的目的;其次基于分时电价形成用户用电舒适度与用热舒适度,构建电热负荷需求响应模型,在掌握电锅炉、储热装置和热需求可时移特性的基础上,通过风电供给价格弹性系数描述风电出力与电锅炉协议电价之间的变化;最后通过综合满意度指标评估负荷响应能力,构建了考虑需求响应和阶梯式碳交易机制的含蓄热式电锅炉综合能源系统优化调度模型,实现系统经济运行,并采用CPLEX求解器对所构建模型进行求解。结果表明所提方法能够有效促进风电消纳,减少碳排放量且有效降低系统运行成本。 展开更多
关键词 阶梯式碳交易 电热负荷需求响应 综合满意度指标 蓄热式电锅炉
下载PDF
基于典型气象数据分析的南北方 供暖特性研究
8
作者 丁勇 向一心 《暖通空调》 2024年第4期120-126,共7页
针对南、北方供暖的需求差异,基于历年气象数据,综合考虑累年最冷月平均温度、供暖度日数HDD18、供暖期天数等多种因素,分析了中国南、北方8个典型城市的气候特征;同时结合需求调研和温度分布、波动差异对比情况,讨论了不同地区热负荷... 针对南、北方供暖的需求差异,基于历年气象数据,综合考虑累年最冷月平均温度、供暖度日数HDD18、供暖期天数等多种因素,分析了中国南、北方8个典型城市的气候特征;同时结合需求调研和温度分布、波动差异对比情况,讨论了不同地区热负荷动态特性及负荷求解宜使用的方法;分析总结了南、北方地区的系统运行特征情况,给出了关于供暖系统设计、系统形式、运行策略的建议;并通过实际案例具体分析了供暖系统设置的适宜性问题,为后续供暖设计方法、参数确定,供暖方式选择和系统设置提供基础。 展开更多
关键词 供暖 南北方供暖差异 气象数据 供暖需求特性 系统特征 案例分析
下载PDF
考虑空气源热泵负荷聚合参与的需求响应
9
作者 梁海平 谢鑫 李世航 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期273-280,共8页
基于“电网-聚合商-负荷”三级架构,提出空气源热泵负荷聚合参与需求响应的控制策略。供暖运营商作为热泵负荷的聚合商,在保证用户热舒适度的基础上,利用建筑本身的蓄能能力,结合分时电价最小化供热成本,并对负荷可调节潜力进行评估。... 基于“电网-聚合商-负荷”三级架构,提出空气源热泵负荷聚合参与需求响应的控制策略。供暖运营商作为热泵负荷的聚合商,在保证用户热舒适度的基础上,利用建筑本身的蓄能能力,结合分时电价最小化供热成本,并对负荷可调节潜力进行评估。当电网调度部门下发调控指令后,考虑用户舒适度和电网调节需求,基于多目标遗传算法分配各负荷调节量,在满足调控目标的同时可改善调控带来的聚合功率振荡、反弹负荷大等问题。最后,仿真验证所提策略的有效性。 展开更多
关键词 空气源热泵 需求响应 温控负荷 模型预测控制 聚合调控 负荷恢复
下载PDF
基于FAHP-QFD的供热用户需求分析
10
作者 孙丽 吴金慧 《大连交通大学学报》 CAS 2024年第4期71-75,共5页
实施精益供热过程中,由于环境的复杂性、用户需求的多样性,供热企业很难精准获得用户需求,对用户体验关注度低。为帮助企业建立更好服务流程,精准获取用户需求,将有限的资源进行有效的分配,提升用户满意度,基于供热用户需求,以调研问卷... 实施精益供热过程中,由于环境的复杂性、用户需求的多样性,供热企业很难精准获得用户需求,对用户体验关注度低。为帮助企业建立更好服务流程,精准获取用户需求,将有限的资源进行有效的分配,提升用户满意度,基于供热用户需求,以调研问卷为主,通过模糊层次分析法(FAHP)确定供热用户需求权重;基于QFD构建质量屋模型,根据用户需求和设计需求相关程度的矩阵得出企业供热需求要素的权重,实现了将用户主观描述的需求转化为企业供热需求。 展开更多
关键词 精益供热 质量功能展开(QFD) 供热用户需求 模糊层次分析法(FAHP)
下载PDF
保障极端高温事件下负荷可靠供应的楼宇综合能源规划
11
作者 高红均 尚梦琪 +1 位作者 贺帅佳 刘俊勇 《中国电机工程学报》 EI CSCD 北大核心 2024年第19期7636-7647,I0012,共13页
近年来极端高温事件频发,负荷侧用电需求激增,电源侧供应能力不足,有必要开展保障极端高温事件下商业综合体楼宇负荷可靠供应的综合能源规划研究。首先,对极端高温事件影响进行建模,并划分重要负荷可靠供应集合,同时建立电价型需求响应... 近年来极端高温事件频发,负荷侧用电需求激增,电源侧供应能力不足,有必要开展保障极端高温事件下商业综合体楼宇负荷可靠供应的综合能源规划研究。首先,对极端高温事件影响进行建模,并划分重要负荷可靠供应集合,同时建立电价型需求响应改变负荷曲线,在极端高温事件下,叠加激励型需求响应来进一步降低负荷水平,考虑经济因素与心理因素对其用户响应概率的影响,并对其不确定性进行描述;其次,以楼宇的规划周期内年总规划成本最优为目标,建立决策楼宇各能源设备型号及台数的楼宇极端高温事件下负荷可靠供应规划模型。利用综合范数约束普通场景、布尔变量约束极端高温场景的概率分布的分布鲁棒优化模型应对屋顶分布式光伏、光伏幕墙及负荷的不确定性。最后,通过算例表明,所提模型在保障极端事件下负荷可靠供应方面具有良好的经济性及鲁棒性。研究成果可为楼宇综合能源规划提供一定的参考。 展开更多
关键词 极端高温事件 负荷可靠供应 需求响应 不确定性 楼宇规划
下载PDF
考虑氢储能和需求响应的综合能源系统双层优化配置
12
作者 栗然 彭湘泽 +1 位作者 吕慧敏 王炳乾 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第1期74-82,111,共10页
在双碳目标下,为改善综合能源系统功率不平衡,提高能源运营商收益,降低用户购能成本,首先,结合氢储能可作为源-荷-储的优点以及电制热的能源转换特性,设计了考虑氢储能的综合能源系统双层框架。其次,根据两种不同时间尺度,提出了一种考... 在双碳目标下,为改善综合能源系统功率不平衡,提高能源运营商收益,降低用户购能成本,首先,结合氢储能可作为源-荷-储的优点以及电制热的能源转换特性,设计了考虑氢储能的综合能源系统双层框架。其次,根据两种不同时间尺度,提出了一种考虑负荷侧需求响应和含电制热设备用户群的综合能源系统氢储能双层优化配置模型,上层模型结合氢储能特性进行长时间尺度优化配置;下层模型利用需求响应和电制热设备对用户群负荷进行优化,以求解短时间尺度含氢储能综合能源系统优化运行问题。再次,采用KKT条件和Big-M法将模型转为单层线性问题。最后,结果显示,通过配置氢储能以及采用电制热设备和需求响应,可提高运营商收入和新能源消纳,降低用户群成本,减少功率失衡风险。 展开更多
关键词 双层优化配置 氢储能 需求响应 电制热设备 KKT
下载PDF
A Model for Regional Energy Utilization by Offline Heat Transport System and Distributed Energy Systems—Case Study in a Smart Community, Japan 被引量:4
13
作者 Liyang Fan Weijun Gao Zhu Wang 《Energy and Power Engineering》 2013年第3期190-205,共16页
Under the Kyoto Protocol,Japanwas supposed to reduce six percent of the green house gas (GHG) emission in 2012. However, until the year 2010, the statistics suggested that the GHG emission increased 4.2%. What is more... Under the Kyoto Protocol,Japanwas supposed to reduce six percent of the green house gas (GHG) emission in 2012. However, until the year 2010, the statistics suggested that the GHG emission increased 4.2%. What is more challenge is, afterFukushimacrisis, without the nuclear energy,Japanmay produce about 15 percent more GHG emissions than1990 inthis fiscal year. It still has to struggle to meet the target set by Kyoto Protocol. The demonstration area of “smart community” suggests Japanese exploration for new low carbon strategies. The study proposed a demand side response energy system, a dynamic tree-like hierarchical model for smart community. The model not only conveyed the concept of smart grid, but also built up a smart heat energy supply chain by offline heat transport system. Further, this model promoted a collaborative energy utilization mode between the industrial sector and the civil sector. In addition, the research chose the smart community inKitakyushuas case study and executed the model. The simulation and the analysis of the model not only evaluate the environmental effect of different technologies but also suggest that the smart community inJapanhas the potential but not easy to achieve the target, cut down 50% of the CO2 emission. 展开更多
关键词 Smart Community demand Side Response Distributed Energy SYSTEM Reutilize FACTORY EXHAUST heat OFFLINE heat Transport SYSTEM
下载PDF
Economic Model Predictive Control for Hot Water Based Heating Systems in Smart Buildings
14
作者 M. A. Ahmed Awadelrahman Yi Zong +1 位作者 Hongwei Li Carsten Agert 《Energy and Power Engineering》 2017年第4期112-119,共8页
This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating syste... This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load shifting compared with some reference cases. 展开更多
关键词 Building ENERGY Management System demand Response ECONOMIC Model PREDICTIVE Control heat PUMPS Smart Buildings Thermal ENERGY Storage
下载PDF
计及需求响应的光热电站参与深度调峰的分层优化调度策略
15
作者 陈伟 刘文翰 +3 位作者 魏占宏 张晓英 李万伟 冯智慧 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期579-590,共12页
从源、荷两侧挖掘系统调峰潜力,建立计及需求响应的光热电站参与深度调峰的分层优化调度模型。上层从负荷侧出发,提出一种基于负荷分类的价格需求响应模型,可有效缓解系统调峰压力;中层从电源侧出发,利用光热电站灵活的调节特性在深度... 从源、荷两侧挖掘系统调峰潜力,建立计及需求响应的光热电站参与深度调峰的分层优化调度模型。上层从负荷侧出发,提出一种基于负荷分类的价格需求响应模型,可有效缓解系统调峰压力;中层从电源侧出发,利用光热电站灵活的调节特性在深度调峰时段协调火电机组参与辅助调峰,构建以运行总成本最小为目标函数的日前调度模型;下层提出一种基于模型预测控制的日内动态调整模型,在滚动优化的同时,通过状态反馈环节实时调整光热电站储热装置充放热修正日前调度计划。仿真结果表明,所提调度策略在降低系统调峰成本的同时能有效抑制风光以及负荷的短时功率波动,在保证系统安全稳定运行的前提下提升风光消纳率。 展开更多
关键词 调度 储热 模型预测控制 光热电站 需求响应 深度调峰
下载PDF
基于室温监测反馈的集中供热按需调控技术研究
16
作者 王延敏 李志伟 +4 位作者 刘俊杰 孟晗 朱咏梅 郎晋东 王伟 《暖通空调》 2024年第10期44-51,共8页
集中供热收费的计量单位为供热面积,在这种计量模式下,供热合格与否的判断指标不是用热量,而是热用户的热舒适性。本文提出了一种以监测反馈室温作为按需供热抓手的分时分区按需供热精准调控技术,在研究分析供热管网宽幅调节、精准输配... 集中供热收费的计量单位为供热面积,在这种计量模式下,供热合格与否的判断指标不是用热量,而是热用户的热舒适性。本文提出了一种以监测反馈室温作为按需供热抓手的分时分区按需供热精准调控技术,在研究分析供热管网宽幅调节、精准输配机制基础上,分析了室温变化规律和热网延时特性,确定了调控目标和技术可行性。为进一步体现室温的综合特性,确定了室温采集传感器数量计算式和空间部署原则,开发了换热站有效室温计算方法,提出了一种结合预测室外气象参数、基于有效室温的反馈值和设定值偏差的预测反馈控制方法和自控逻辑。工程实践表明,该技术不仅能提升用热质量,还能较大幅度地降低热耗。 展开更多
关键词 集中供热 按需供热 室温监测 按需调控 延时特性 预测反馈
下载PDF
基于源荷储灵活资源协同的电热综合能源系统实验平台
17
作者 张亚超 朱蜀 林俊杰 《实验室研究与探索》 CAS 北大核心 2024年第7期69-75,共7页
当前能源转型背景下,发展综合能源系统是实现“碳达峰、碳中和”以及新型电力系统建设目标的重要途径。针对含多元化灵活资源的电热耦合系统,提出考虑“源-荷-储”协同的电热综合能源系统实验平台构建方案。设计考虑热电联产机组、电制... 当前能源转型背景下,发展综合能源系统是实现“碳达峰、碳中和”以及新型电力系统建设目标的重要途径。针对含多元化灵活资源的电热耦合系统,提出考虑“源-荷-储”协同的电热综合能源系统实验平台构建方案。设计考虑热电联产机组、电制热装置、蓄热罐以及电/热需求响应协同优化调度的实验案例,探讨实验平台在基础教学和拓展科研方面的用途。实验平台的建设为电气工程专业学生参与项目训练和创新实践类活动提供了重要的实践平台,有助于激发科研人员的探索性、创新性思维,促进理论研究和实验仿真的有机结合与良性循环,为综合能源系统领域的研究提供有力支撑。 展开更多
关键词 源荷储协同 实验平台 综合能源系统 电热需求响应
下载PDF
一种月面微型热管堆电源概念设想
18
作者 赵泽龙 杨睿 +4 位作者 王傲 徐驰 郭键 安伟健 胡古 《电源技术》 CAS 北大核心 2024年第3期513-518,共6页
未来月球科研站建设及月面探测等任务需解决长期稳定能源及电力供给问题,受月面复杂环境影响,月面能源供给挑战极大。核反应堆电源具有长寿命、全天候、环境耐受力强等优势,是解决月面任务长期能源需求的理想选择,热管冷却型反应堆作为... 未来月球科研站建设及月面探测等任务需解决长期稳定能源及电力供给问题,受月面复杂环境影响,月面能源供给挑战极大。核反应堆电源具有长寿命、全天候、环境耐受力强等优势,是解决月面任务长期能源需求的理想选择,热管冷却型反应堆作为一种新型反应堆电源具有系统简单、结构紧凑、可靠性高等特点,且易于实现长寿命设计。针对目前月面能源问题,提出了采用500 W电功率月面微型热管堆电源供电的初步设想,并重点对其屏蔽设计及辐射防护问题进行了研究,提出了相关屏蔽设计方案及辐射防护措施。经过初步屏蔽设计研究,该电源可采用移动式、月面固定点位布置及浅坑式布置多种方式为月面用电设备供电,质量可约束在500 kg左右,轻质且微型,为科研站月面核反应堆电源屏蔽设计提供了思路。 展开更多
关键词 月球科研站 月面能源需求 月面微型热管堆 屏蔽设计
下载PDF
智慧供热技术在城市集中供热系统的应用分析 被引量:1
19
作者 苏继程 毛明强 《建设科技》 2024年第5期39-42,共4页
智慧供热是将供热生产、供热输出、供热信息控制与传统集中供热的有机结合,以供热管网水力信息、室温采集为主题,实现了一种新型的智慧供热系统。将系统控制、水力信息、控制云平台一体化,达到数据采集智能化、系统调控自动化、运营监管... 智慧供热是将供热生产、供热输出、供热信息控制与传统集中供热的有机结合,以供热管网水力信息、室温采集为主题,实现了一种新型的智慧供热系统。将系统控制、水力信息、控制云平台一体化,达到数据采集智能化、系统调控自动化、运营监管化,达到供热稳定、高效节能、绿色环保的最大目的。随着我国城镇集中供热区域和供热规模的不断增大,供热方式日趋复杂化,对供热企业的运营和经营管理也提出了更高的需求,而智慧供热技术的发展,为实现“均衡输送、按需供热”的城市集中供热管网建设,起到了很好的支撑作用。 展开更多
关键词 智慧供热技术 集中供热管网 按需供热 节能运行
下载PDF
基于热特性及供热参数预测的热力站调控方法研究
20
作者 郑立红 周志华 +1 位作者 郭新川 崔博宁 《暖通空调》 2024年第10期108-112,共5页
基于预测的热力站调控对实现供热系统的节能降耗和按需供热具有重要意义,但是输入数据的质量影响预测结果的准确性,而模型复杂度则限制了实际应用推广。针对这2个问题,提出了一种融合建筑热特性k值及BiGRU预测供热参数的调控方法。为了... 基于预测的热力站调控对实现供热系统的节能降耗和按需供热具有重要意义,但是输入数据的质量影响预测结果的准确性,而模型复杂度则限制了实际应用推广。针对这2个问题,提出了一种融合建筑热特性k值及BiGRU预测供热参数的调控方法。为了提高预测模型输入数据的质量,利用历史数据回归得到热力站的综合热特性k值,并根据k值对热力站进行分组,将每组热力站供热参数的平均值作为预测模型的输入。然后,基于BiGRU建立每组热力站的供热参数预测模型,用于指导热力站的运行调控。实际案例分析结果表明,预测值与各热力站的实际供热参数的均方根误差(RMSE)不大于0.53℃,平均绝对百分比误差(MAPE)小于1.5%,验证了该方法的有效性,为实现按需供热提供了理论基础。 展开更多
关键词 按需供热 热力站 调控 热特性 供热参数 预测 BiGRU
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部