Accurate short-term forecasting of heating energy demand is needed for achieving optimal building energy management,cost savings,environmental sustainability,and responsible energy consumption.Furthermore,short-term h...Accurate short-term forecasting of heating energy demand is needed for achieving optimal building energy management,cost savings,environmental sustainability,and responsible energy consumption.Furthermore,short-term heating energy prediction contributes to zero-energy building performance in cold climates.Given the critical importance of short-term forecasting in heating energy management,this study evaluated six prevalent deep-learning algorithms to predict energy load,including single and hybrid models.The overall best-performing predictors were hybrid models using Convolutional Neural Networks,regardless of whether they were multivariate or univariate.Nevertheless,while the multivariate models performed better in the first hour,the univariate models often were more accurate in the final 24 h.Thus,the best-performing predictor of the first timestep was a multivariate hybrid Convolutional Neural Network–Recurrent Neural Network model with a coefficient of determination(R^(2))of 0.98 and the lowest mean absolute error.Yet,the best-performing predictor of the final timestep was the univariate hybrid model Convolutional Neural Network–Long Short-Term Memory with an R^(2)of 0.80.Also,the prediction accuracy of the best-performing multivariate hybrid models reduced faster per hour compared to the univariate models.These findings suggest that multivariate models may be better suited for early timestep predictions,while univariate models may be better suited for later time steps.Hence,combining the models can enhance accuracy at various timesteps for achieving high fidelity in forecasting and offering a comprehensive tool for energy management.展开更多
Artificial neural network(ANN)has become an important method to model the nonlinear relationships between weather conditions,building characteristics and its heat demand.Due to the large amount of training data re-qui...Artificial neural network(ANN)has become an important method to model the nonlinear relationships between weather conditions,building characteristics and its heat demand.Due to the large amount of training data re-quired for ANN training,data reduction and feature selection are important to simplify the training.However,in building heat demand prediction,many weather-related input variables contain duplicated features.This paper develops a sensitivity analysis approach to analyse the correlation between input variables and to detect the variables that have high importance but contain duplicated features.The proposed approach is validated in a case study that predicts the heat demand of a district heating network containing tens of buildings at a university campus.The results show that the proposed approach detected and removed several unnecessary input variables and helped the ANN model to reduce approximately 20%training time compared with the traditional methods while maintaining the prediction accuracy.It indicates that the approach can be applied for analysing large num-ber of input variables to help improving the training efficiency of ANN in district heat demand prediction and other applications.展开更多
To achieve CO2 emissions reductions, the UK Building Regulations require developers of new residential buildings to calculate expected CO2 emissions arising from their energy consumption using a methodology such as St...To achieve CO2 emissions reductions, the UK Building Regulations require developers of new residential buildings to calculate expected CO2 emissions arising from their energy consumption using a methodology such as Standard Assessment Procedure (SAP 2005) or, more recently SAP 2009. SAP encompasses all domestic heat consumption and a limited proportion of the electricity consumption. However, these calculations are rarely verified with real energy consumption and related CO2 emissions. This work presents the results of an analysis based on weekly heat demand data for more than 200 individual fiats. The data were collected from a recently built residential development connected to a district heating network. A method for separating out the domestic hot water (DHW) use and space heating (SH) demand has been developed and these values are compared to the demand calculated using SAP 2005 and SAP 2009 methodologies. The analysis also shows the variation in DHW and SH consumption with size of flats and with tenure (privately owned or social housing). Evaluation of the space heating consumption also includes an estimate of the heating degree day (HDD) base temperature for each block of fiats and compares this to the average base temperature calculated using the SAP 2005 methodology.展开更多
Contraction of resilience on generation side due to the introduction of inflexible renewable energy sources is demanding more elasticity on consumption side. It requires more intelligent systems to be implemented to m...Contraction of resilience on generation side due to the introduction of inflexible renewable energy sources is demanding more elasticity on consumption side. It requires more intelligent systems to be implemented to maintain power balance in the grid and to fulfill the consumer needs. This paper is concerned about the energy balance management of the system using intelligent agent-based architecture. The idea is to limit the peak power of each individual household for different defined time regions of the day according to power production during those time regions. Monte Carlo Simulation (MCS) has been employed to study the behavior of a particular number of households for maintaining the power balance based on proposed technique to limit the peak power for each household and even individual load level. Flexibility of two major loads i.e. heating load (heat storage tank) and electric vehicle load (battery) allows us to shift the peaks on demand side proportionally with the generation in real time. Different parameters related to heating and Electric Vehicle (EV) load e.g. State of Charge (SOC), storage capacities, charging power, daily usage, peak demand hours have been studied and a technique is proposed to mitigate the imbalance of power intelligently.展开更多
Meeting the goal of zero emissions in the energy sector by 2050 requires accurate prediction of energy consumption,which is increasingly important.However,conventional bottom-up model-based heat demand forecasting met...Meeting the goal of zero emissions in the energy sector by 2050 requires accurate prediction of energy consumption,which is increasingly important.However,conventional bottom-up model-based heat demand forecasting methods are not suitable for large-scale,high-resolution,and fast forecasting due to their complexity and the difficulty in obtaining model parameters.This paper presents an artificial neural network(ANN)model to predict hourly heat demand on a national level,which replaces the traditional bottom-up model based on extensive building simulations and computation.The ANN model significantly reduces prediction time and complexity by reducing the number of model input types through feature selection,making the model more realistic by removing non-essential inputs.The improved model can be trained using fewer meteorological data types and insufficient data,while accurately forecasting the hourly heat demand throughout the year within an acceptable error range.The model provides a framework to obtain accurate heat demand predictions for large-scale areas,which can be used as a reference for stakeholders,especially policymakers,to make informed decisions.展开更多
The artificial ground freezing(AGF)systems are designed to operate continuously for an extended period of time to control the groundwater seepage and to strengthen the groundwater structure surrounding excavation area...The artificial ground freezing(AGF)systems are designed to operate continuously for an extended period of time to control the groundwater seepage and to strengthen the groundwater structure surrounding excavation areas.This mode of operation requires a massive amount of energy to sustain the thickness of the frozen body.Therefore,it is of great interest to propose new concepts to reduce energy consumption while providing sufficient structural stability and safe operation.This paper discusses the principle of the freezing on demand(FoD)by means of experiment and mathematical model.A lab-scale rig that mimics the AGF process is conceived and developed.The setup is equipped with more than 80 thermocouples,flow-meters,and advanced instrumentation system to analyze the performance of the AGF process under the FoD concept.A mathematical model has been derived,validated,and utilized to simulate the transient FoD concept.The results suggest that the overall energy saving notably depends on the coolant’s temperature;the energy saving increases while decreasing the coolant inlet temperature.Moreover,applying the FoD concept in an AGF system leads to a significant drop in energy consumption.展开更多
Under the Kyoto Protocol,Japanwas supposed to reduce six percent of the green house gas (GHG) emission in 2012. However, until the year 2010, the statistics suggested that the GHG emission increased 4.2%. What is more...Under the Kyoto Protocol,Japanwas supposed to reduce six percent of the green house gas (GHG) emission in 2012. However, until the year 2010, the statistics suggested that the GHG emission increased 4.2%. What is more challenge is, afterFukushimacrisis, without the nuclear energy,Japanmay produce about 15 percent more GHG emissions than1990 inthis fiscal year. It still has to struggle to meet the target set by Kyoto Protocol. The demonstration area of “smart community” suggests Japanese exploration for new low carbon strategies. The study proposed a demand side response energy system, a dynamic tree-like hierarchical model for smart community. The model not only conveyed the concept of smart grid, but also built up a smart heat energy supply chain by offline heat transport system. Further, this model promoted a collaborative energy utilization mode between the industrial sector and the civil sector. In addition, the research chose the smart community inKitakyushuas case study and executed the model. The simulation and the analysis of the model not only evaluate the environmental effect of different technologies but also suggest that the smart community inJapanhas the potential but not easy to achieve the target, cut down 50% of the CO2 emission.展开更多
This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating syste...This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load shifting compared with some reference cases.展开更多
基金funded by the Natural Sciences and Engineering Research Council(NSERC)Discovery Grant,grant number RGPIN-05481.
文摘Accurate short-term forecasting of heating energy demand is needed for achieving optimal building energy management,cost savings,environmental sustainability,and responsible energy consumption.Furthermore,short-term heating energy prediction contributes to zero-energy building performance in cold climates.Given the critical importance of short-term forecasting in heating energy management,this study evaluated six prevalent deep-learning algorithms to predict energy load,including single and hybrid models.The overall best-performing predictors were hybrid models using Convolutional Neural Networks,regardless of whether they were multivariate or univariate.Nevertheless,while the multivariate models performed better in the first hour,the univariate models often were more accurate in the final 24 h.Thus,the best-performing predictor of the first timestep was a multivariate hybrid Convolutional Neural Network–Recurrent Neural Network model with a coefficient of determination(R^(2))of 0.98 and the lowest mean absolute error.Yet,the best-performing predictor of the final timestep was the univariate hybrid model Convolutional Neural Network–Long Short-Term Memory with an R^(2)of 0.80.Also,the prediction accuracy of the best-performing multivariate hybrid models reduced faster per hour compared to the univariate models.These findings suggest that multivariate models may be better suited for early timestep predictions,while univariate models may be better suited for later time steps.Hence,combining the models can enhance accuracy at various timesteps for achieving high fidelity in forecasting and offering a comprehensive tool for energy management.
文摘Artificial neural network(ANN)has become an important method to model the nonlinear relationships between weather conditions,building characteristics and its heat demand.Due to the large amount of training data re-quired for ANN training,data reduction and feature selection are important to simplify the training.However,in building heat demand prediction,many weather-related input variables contain duplicated features.This paper develops a sensitivity analysis approach to analyse the correlation between input variables and to detect the variables that have high importance but contain duplicated features.The proposed approach is validated in a case study that predicts the heat demand of a district heating network containing tens of buildings at a university campus.The results show that the proposed approach detected and removed several unnecessary input variables and helped the ANN model to reduce approximately 20%training time compared with the traditional methods while maintaining the prediction accuracy.It indicates that the approach can be applied for analysing large num-ber of input variables to help improving the training efficiency of ANN in district heat demand prediction and other applications.
文摘To achieve CO2 emissions reductions, the UK Building Regulations require developers of new residential buildings to calculate expected CO2 emissions arising from their energy consumption using a methodology such as Standard Assessment Procedure (SAP 2005) or, more recently SAP 2009. SAP encompasses all domestic heat consumption and a limited proportion of the electricity consumption. However, these calculations are rarely verified with real energy consumption and related CO2 emissions. This work presents the results of an analysis based on weekly heat demand data for more than 200 individual fiats. The data were collected from a recently built residential development connected to a district heating network. A method for separating out the domestic hot water (DHW) use and space heating (SH) demand has been developed and these values are compared to the demand calculated using SAP 2005 and SAP 2009 methodologies. The analysis also shows the variation in DHW and SH consumption with size of flats and with tenure (privately owned or social housing). Evaluation of the space heating consumption also includes an estimate of the heating degree day (HDD) base temperature for each block of fiats and compares this to the average base temperature calculated using the SAP 2005 methodology.
文摘Contraction of resilience on generation side due to the introduction of inflexible renewable energy sources is demanding more elasticity on consumption side. It requires more intelligent systems to be implemented to maintain power balance in the grid and to fulfill the consumer needs. This paper is concerned about the energy balance management of the system using intelligent agent-based architecture. The idea is to limit the peak power of each individual household for different defined time regions of the day according to power production during those time regions. Monte Carlo Simulation (MCS) has been employed to study the behavior of a particular number of households for maintaining the power balance based on proposed technique to limit the peak power for each household and even individual load level. Flexibility of two major loads i.e. heating load (heat storage tank) and electric vehicle load (battery) allows us to shift the peaks on demand side proportionally with the generation in real time. Different parameters related to heating and Electric Vehicle (EV) load e.g. State of Charge (SOC), storage capacities, charging power, daily usage, peak demand hours have been studied and a technique is proposed to mitigate the imbalance of power intelligently.
基金the financial support provided by EPSRC(EP/T022701/1,EP/V042033/1,EP/V030515/1,EP/W027593/1)in the UK.
文摘Meeting the goal of zero emissions in the energy sector by 2050 requires accurate prediction of energy consumption,which is increasingly important.However,conventional bottom-up model-based heat demand forecasting methods are not suitable for large-scale,high-resolution,and fast forecasting due to their complexity and the difficulty in obtaining model parameters.This paper presents an artificial neural network(ANN)model to predict hourly heat demand on a national level,which replaces the traditional bottom-up model based on extensive building simulations and computation.The ANN model significantly reduces prediction time and complexity by reducing the number of model input types through feature selection,making the model more realistic by removing non-essential inputs.The improved model can be trained using fewer meteorological data types and insufficient data,while accurately forecasting the hourly heat demand throughout the year within an acceptable error range.The model provides a framework to obtain accurate heat demand predictions for large-scale areas,which can be used as a reference for stakeholders,especially policymakers,to make informed decisions.
基金McGill Engineering Doctoral Award(MEDA)Fonds de recherche du Québec-Nature et technologies(FRQNT)-Bourses de doctorat(B2X)for supporting this research
文摘The artificial ground freezing(AGF)systems are designed to operate continuously for an extended period of time to control the groundwater seepage and to strengthen the groundwater structure surrounding excavation areas.This mode of operation requires a massive amount of energy to sustain the thickness of the frozen body.Therefore,it is of great interest to propose new concepts to reduce energy consumption while providing sufficient structural stability and safe operation.This paper discusses the principle of the freezing on demand(FoD)by means of experiment and mathematical model.A lab-scale rig that mimics the AGF process is conceived and developed.The setup is equipped with more than 80 thermocouples,flow-meters,and advanced instrumentation system to analyze the performance of the AGF process under the FoD concept.A mathematical model has been derived,validated,and utilized to simulate the transient FoD concept.The results suggest that the overall energy saving notably depends on the coolant’s temperature;the energy saving increases while decreasing the coolant inlet temperature.Moreover,applying the FoD concept in an AGF system leads to a significant drop in energy consumption.
文摘Under the Kyoto Protocol,Japanwas supposed to reduce six percent of the green house gas (GHG) emission in 2012. However, until the year 2010, the statistics suggested that the GHG emission increased 4.2%. What is more challenge is, afterFukushimacrisis, without the nuclear energy,Japanmay produce about 15 percent more GHG emissions than1990 inthis fiscal year. It still has to struggle to meet the target set by Kyoto Protocol. The demonstration area of “smart community” suggests Japanese exploration for new low carbon strategies. The study proposed a demand side response energy system, a dynamic tree-like hierarchical model for smart community. The model not only conveyed the concept of smart grid, but also built up a smart heat energy supply chain by offline heat transport system. Further, this model promoted a collaborative energy utilization mode between the industrial sector and the civil sector. In addition, the research chose the smart community inKitakyushuas case study and executed the model. The simulation and the analysis of the model not only evaluate the environmental effect of different technologies but also suggest that the smart community inJapanhas the potential but not easy to achieve the target, cut down 50% of the CO2 emission.
文摘This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load shifting compared with some reference cases.