A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid ...A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid dynamics.The effects of the applied voltage on the distribution of velocity and temperature in initially static air are parainetrically studied.Furthermore,the spatial structure of plasma discharge and the resulting force contours in streamwise and normal directions are discussed in detail.The result shows that the plasma actuator produces a net force that should always be directed away from the exposed electrode,which results in an ionic wind pushing particles into a jet downstream of the actuator.When the energy added by the plasma is taken into account,the ambient air temperature is increased slightly around the electrode,but the velocity is almost not affected.Therefore it is unlikely that the induced flow is buoyancy driven.For the operating voltages considered in this paper,the maximum induced velocity is found to follow a power law,i.e.,it is proportional to the applied voltage to the 3.5 power.This promises an efficient application in the flow control with plasma actuators.展开更多
A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on e...A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.展开更多
Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underly...Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underlying phenomena as it provides access to local parameters--and complements experimental global characteristics. A self-consistent formalism, applied to nanosecond pulsed atmospheric non-equilibrium helium plasmas, reveals that several successive discharges can persist as a result of a combined volume and dielectric surface effects. The valuable insights provided by the spatiotemporal simulation results show the critical importance of coupled gas and plasma dynamics--namely gas heating and electric field reversals.展开更多
Chemical heat storage is a promising technology for improving thermal energy efficiency. In this study, CaCl<sub>2</sub> and H<sub>2</sub>O were selected as a reaction system for utilization of...Chemical heat storage is a promising technology for improving thermal energy efficiency. In this study, CaCl<sub>2</sub> and H<sub>2</sub>O were selected as a reaction system for utilization of low-grade exhaust heat that is cooler than 200<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>C. Heat discharging and charging were conducted through the CaCl<sub>2</sub> hydration reaction. A silicon carbide honeycomb was adopted to improve heat transfer in the CaCl<sub>2</sub> packed bed. The heat storage, condenser, and evaporator temperature were set at 150<span style="white-space:nowrap;">°</span>C, 30<span style="white-space:nowrap;">°</span>C and 90<span style="white-space:nowrap;">°</span>C respectively. Repeated trials and experiments are time consuming for optimizing design of the equipment. Therefore, in this research, we constructed a simulation that can predict the performance of the device. A numerical simulation model was utilized in preparation for the design of the heat storage module. The consistency of both the simulation and the experimental results was confirmed by comparing them.展开更多
Temperature measurement by IR (infrared) camera was performed oll HT-T tokamak. particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat ...Temperature measurement by IR (infrared) camera was performed oll HT-T tokamak. particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat load on the surface of the movable limiter could be obtained through ANSYS with the temperature measured by IR-camera. This work could be important for the temperature measurement and heat load study on the first wall of EAST device.展开更多
This paper describes the effects that temperature changes in the Rhine river distributaries have on native and exotic fish diversity. Site-specific potentially affected fractions (PAFs) of the regional fish species ...This paper describes the effects that temperature changes in the Rhine river distributaries have on native and exotic fish diversity. Site-specific potentially affected fractions (PAFs) of the regional fish species pool were derived using species sensitivity distributions (SSDs) for water temperature. The number of fish species in the river distributaries has changed remarkably over the last century. The number of native rheophilous species declined up until 1980 due to anthropogenic disturbances such as commercial fishing, fiver regulation, migration barriers, habitat deterioration and water pollution. In spite of progress in river re- habilitation, the native rheophilous fish fauna has only partially recovered thus far. The total number of species has strongly in- creased due to the appearance of more exotic species. After the opening of the Rhine-Main-Danube waterway in 1992, many fish species originating from the Ponto-Caspian area colonized the Rhine basin. The yearly minimum and maximum river tempera- tures at Lobith have increased by circa 4 ~C over the period 1908-2010. Exotic species show lower PAFs than native species at both ends of the temperature range. The interspecific variation in the temperature tolerance of exotic fish species was found to be large. Using temporal trends in river temperature allowed past predictions of PAFs to demonstrate that the increase in maximum river temperature negatively affected a higher percentage of native fish species than exotic species. Our results support the hy- pothesis that alterations of the river Rhine's temperature regime caused by thermal pollution and global wanning limit the full recovery of native fish fauna and facilitate the establishment of exotic species which thereby increases competition between native and exotic species. Thermal refuges are important for the survival of native fish species under extreme summer or winter temperature conditions展开更多
基金supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.51121004)National Natural Science Foundation of China(No.50976026)
文摘A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid dynamics.The effects of the applied voltage on the distribution of velocity and temperature in initially static air are parainetrically studied.Furthermore,the spatial structure of plasma discharge and the resulting force contours in streamwise and normal directions are discussed in detail.The result shows that the plasma actuator produces a net force that should always be directed away from the exposed electrode,which results in an ionic wind pushing particles into a jet downstream of the actuator.When the energy added by the plasma is taken into account,the ambient air temperature is increased slightly around the electrode,but the velocity is almost not affected.Therefore it is unlikely that the induced flow is buoyancy driven.For the operating voltages considered in this paper,the maximum induced velocity is found to follow a power law,i.e.,it is proportional to the applied voltage to the 3.5 power.This promises an efficient application in the flow control with plasma actuators.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)-Discovery Grant(No.342369)
文摘Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underlying phenomena as it provides access to local parameters--and complements experimental global characteristics. A self-consistent formalism, applied to nanosecond pulsed atmospheric non-equilibrium helium plasmas, reveals that several successive discharges can persist as a result of a combined volume and dielectric surface effects. The valuable insights provided by the spatiotemporal simulation results show the critical importance of coupled gas and plasma dynamics--namely gas heating and electric field reversals.
文摘Chemical heat storage is a promising technology for improving thermal energy efficiency. In this study, CaCl<sub>2</sub> and H<sub>2</sub>O were selected as a reaction system for utilization of low-grade exhaust heat that is cooler than 200<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>C. Heat discharging and charging were conducted through the CaCl<sub>2</sub> hydration reaction. A silicon carbide honeycomb was adopted to improve heat transfer in the CaCl<sub>2</sub> packed bed. The heat storage, condenser, and evaporator temperature were set at 150<span style="white-space:nowrap;">°</span>C, 30<span style="white-space:nowrap;">°</span>C and 90<span style="white-space:nowrap;">°</span>C respectively. Repeated trials and experiments are time consuming for optimizing design of the equipment. Therefore, in this research, we constructed a simulation that can predict the performance of the device. A numerical simulation model was utilized in preparation for the design of the heat storage module. The consistency of both the simulation and the experimental results was confirmed by comparing them.
基金National Natural Science Foundation of China(No.10305011)
文摘Temperature measurement by IR (infrared) camera was performed oll HT-T tokamak. particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat load on the surface of the movable limiter could be obtained through ANSYS with the temperature measured by IR-camera. This work could be important for the temperature measurement and heat load study on the first wall of EAST device.
文摘This paper describes the effects that temperature changes in the Rhine river distributaries have on native and exotic fish diversity. Site-specific potentially affected fractions (PAFs) of the regional fish species pool were derived using species sensitivity distributions (SSDs) for water temperature. The number of fish species in the river distributaries has changed remarkably over the last century. The number of native rheophilous species declined up until 1980 due to anthropogenic disturbances such as commercial fishing, fiver regulation, migration barriers, habitat deterioration and water pollution. In spite of progress in river re- habilitation, the native rheophilous fish fauna has only partially recovered thus far. The total number of species has strongly in- creased due to the appearance of more exotic species. After the opening of the Rhine-Main-Danube waterway in 1992, many fish species originating from the Ponto-Caspian area colonized the Rhine basin. The yearly minimum and maximum river tempera- tures at Lobith have increased by circa 4 ~C over the period 1908-2010. Exotic species show lower PAFs than native species at both ends of the temperature range. The interspecific variation in the temperature tolerance of exotic fish species was found to be large. Using temporal trends in river temperature allowed past predictions of PAFs to demonstrate that the increase in maximum river temperature negatively affected a higher percentage of native fish species than exotic species. Our results support the hy- pothesis that alterations of the river Rhine's temperature regime caused by thermal pollution and global wanning limit the full recovery of native fish fauna and facilitate the establishment of exotic species which thereby increases competition between native and exotic species. Thermal refuges are important for the survival of native fish species under extreme summer or winter temperature conditions