Of concern is the scenario of a heat equation on a domain that contains a thin layer,on which the thermal conductivity is drastically different from that in the bulk.The multi-scales in the spatial variable and the th...Of concern is the scenario of a heat equation on a domain that contains a thin layer,on which the thermal conductivity is drastically different from that in the bulk.The multi-scales in the spatial variable and the thermal conductivity lead to computational difficulties,so we may think of the thin layer as a thickless surface,on which we impose"effective boundary conditions"(EBCs).These boundary conditions not only ease the computational burden,but also reveal the effect of the inclusion.In this paper,by considering the asymptotic behavior of the heat equation with interior inclusion subject to Dirichlet boundary condition,as the thickness of the thin layer shrinks,we derive,on a closed curve inside a two-dimensional domain,EBCs which include a Poisson equation on the curve,and a non-local one.It turns out that the EBCs depend on the magnitude of the thermal conductivity in the thin layer,compared to the reciprocal of its thickness.展开更多
In this paper,by me as of beundary element method,we try to deal with the initial -boundary value problem for a class of linear parunolic equations,which is a linear heat conduction equation. We tresent a boundary int...In this paper,by me as of beundary element method,we try to deal with the initial -boundary value problem for a class of linear parunolic equations,which is a linear heat conduction equation. We tresent a boundary integral equation for the solution to the problem and its variational formalation The well-posedness of the variational formulation is proved. And the error estimates for the approsutate solutions are provided. The results of this paper are more general than those of[1]展开更多
基金NSF of China(No.11701180)Fundamental Research Funds for the Central Universities(No.19lgpy232)supported by NSF of China(Nos.11671190,11731005)。
文摘Of concern is the scenario of a heat equation on a domain that contains a thin layer,on which the thermal conductivity is drastically different from that in the bulk.The multi-scales in the spatial variable and the thermal conductivity lead to computational difficulties,so we may think of the thin layer as a thickless surface,on which we impose"effective boundary conditions"(EBCs).These boundary conditions not only ease the computational burden,but also reveal the effect of the inclusion.In this paper,by considering the asymptotic behavior of the heat equation with interior inclusion subject to Dirichlet boundary condition,as the thickness of the thin layer shrinks,we derive,on a closed curve inside a two-dimensional domain,EBCs which include a Poisson equation on the curve,and a non-local one.It turns out that the EBCs depend on the magnitude of the thermal conductivity in the thin layer,compared to the reciprocal of its thickness.
文摘In this paper,by me as of beundary element method,we try to deal with the initial -boundary value problem for a class of linear parunolic equations,which is a linear heat conduction equation. We tresent a boundary integral equation for the solution to the problem and its variational formalation The well-posedness of the variational formulation is proved. And the error estimates for the approsutate solutions are provided. The results of this paper are more general than those of[1]