期刊文献+
共找到1,572篇文章
< 1 2 79 >
每页显示 20 50 100
Numerical simulation of heat transfer enhancement by strip-coil-baffles in tube-bundle for a tube-shell heat exchanger
1
作者 陈亚平 梅娜 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期81-85,共5页
A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vor... A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vortex flow in a heat exchanger. The numerical simulation on the flow and heat transfer characteristics for this new structure heat exchanger is conducted. The computational domain consists of two strip-coil sleeved tubes and two bare tubes oppositely placed at each comer of a square. The velocity and temperature fields in such strip-coil-baffled channel are simulated using FLUENT software. The effects of the strip-coil-baffles on heat transfer enhancement and flow resistance in relation to the Reynolds number are analyzed. The results show that this new structure bundle can enhance the heat transfer coefficient up to a range of 40% to 55% in comparison with a bare tube bundle; meanwhile, higher flow resistance is also accompanied. It is believe that the strip-coil- baffled heat exchanger should have promising applications in many industry fields. 展开更多
关键词 heat transfer enhancement strip-coil-baffle tube-shell heat exchanger vortex flow numerical simulation
下载PDF
Heat transfer enhancement of finned shell and tube heat exchanger using Fe_(2)O_(3)/water nanofluid 被引量:2
2
作者 AFSHARI Faraz SÖZEN Adnan +1 位作者 KHANLARI Ataollah TUNCER Azim Doğuş 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3297-3309,共13页
Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgra... Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers.In this numerical study,a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer.Fe_(2)O_(3)/water nanofluids with volume concentration of 1%,1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water.ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem.Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger.Also,increasing the ratio of Fe_(2)O_(3) nanoparticles caused more increment in thermal energy without important pressure drop.Moreover,it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe_(2)O_(3)/water with volume fraction of 2%. 展开更多
关键词 heat transfer enhancement NANOFLUID shell and tube heat exchanger Fe_(2)O_(3)
下载PDF
A numerical study on heat transfer enhancement and design of a heat exchanger with porous media in continuous hydrothermal flow synthesis system 被引量:2
3
作者 Pedram Karimi Pour-Fard Ebrahim Afshari +1 位作者 Masoud Ziaei-Rad Shahed Taghian-Dehaghani 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1352-1359,共8页
The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat e... The aim of this study is to use a new configuration of porous media in a heat exchanger in continuous hydrothermal flow synthesis(CHFS)system to enhance the heat transfer and minimize the required length of the heat exchanger.For this purpose,numerous numerical simulations are performed to investigate performance of the system with porous media.First,the numerical simulation for the heat exchanger in CHFS system is validated by experimental data.Then,porous media is added to the system and six different thicknesses for the porous media are examined to obtain the optimum thickness,based on the minimum required length of the heat exchanger.Finally,by changing the flow rate and inlet temperature of the product as well as the cooling water flow rate,the minimum required length of the heat exchanger with porous media for various inlet conditions is assessed.The investigations indicate that using porous media with the proper thickness in the heat exchanger increases the cooling rate of the product by almost 40% and reduces the required length of the heat exchanger by approximately 35%.The results also illustrate that the most proper thickness of the porous media is approximately equal to 90% of the product tube's thickness.Results of this study lead to design a porous heat exchanger in CHFS system for various inlet conditions. 展开更多
关键词 Continuous hydrothermal flow synthesis heat exchanger heat transfer enhancement Porous media Numerical simulation
下载PDF
Experimental Study on Heat Transfer and Pressure Drop of Micro-Sized Tube Heat Exchanger 被引量:2
4
作者 王秋香 戴传山 《Transactions of Tianjin University》 EI CAS 2014年第1期21-26,共6页
A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of t... A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional. 展开更多
关键词 micro-sized tube heat exchanger heat transfer pressure drop entrance effect
下载PDF
ENHANCED HEAT TRANSFER OF GLASS TUBE HEAT EXCHANGER
5
作者 高青 卓宁 马其良 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1993年第2期44-52,共9页
The enhancement of convective heat transfer in a glass tube heat exchanger was researched.A simple and efficient method using spiral wire turbulence promotors in the glass tube isrecommended.A series of experiments we... The enhancement of convective heat transfer in a glass tube heat exchanger was researched.A simple and efficient method using spiral wire turbulence promotors in the glass tube isrecommended.A series of experiments were conducted,and thetlon have been obtained.Performance evaluations Nr the enhanced heattrans比r In this heatexchanger are su门niii ed up and discussed Based on the vlewp01nt Of止berinodynaffi1CS,止he avaHableenergy lossof the heat transfer swtern Inside the tube Is analwed to determine and evaluate the over-all趴ct oQthe enhanced heat transfer,The mechanism ofenhanced heat transfer]n the glass tubeand the Influence of turbutlvlty In the fough tube are also analysed and discussed. 展开更多
关键词 glass tube heat exchanger enhanced heat transfer THERMODYNAMIC analysis
下载PDF
Experimental investigation of enhanced heat transfer for fined circular tube heat exchanger with rectangular fins
6
作者 李永星 杨冬 陈听宽 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第4期385-390,共6页
Presents a set of data for flow and heat transfer of finned-tube bundle under the condition of high air flow velocity. Air flow and heat transfer over a 4 × 4 ( columns × rows) finned-tube heat exchanger w... Presents a set of data for flow and heat transfer of finned-tube bundle under the condition of high air flow velocity. Air flow and heat transfer over a 4 × 4 ( columns × rows) finned-tube heat exchanger with rectangular fins was investigated experimentally in a wind tunnel with constant wall temperatures condition. The air flow velocity based on the minimum flow cross-section area over flow channel ranged from 13.8 to 50. 2 m/s, the heal transfer rate ranged from 21.8 to47. 1 kW, and the air temperatures increase ranged from 10. 9 to 19. 8 ℃. The present results were compared with results calculated from correlations proposed by CSPE. For air flow velocity less than 25 m/s, these two results of heat transfer agreed well with each other, whereas for larger velocity, our test data disagreed with the CSPE correlations. For the friction factor, present data are much higher than the predicted results in the whole range. Finally, correlations for friction factors and heat transfer coefficients are DrODosed based on the experimental results. 展开更多
关键词 haeat exchanger rectangular finned-tube enhanced heat transfer friction factor
下载PDF
Thermohydraulics of Turbulent Flow Through Heat Exchanger Tubes Fitted with Circular-rings and Twisted Tapes 被引量:6
7
作者 Smith Eiamsa-ard Vichan Kongkaitpaiboon Kwanchai Nanan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第6期585-593,共9页
The influences of circular-ring turbulators (CRT) and twisted tape (TT) swirl generators on the heat transfer enhancement, pressure drop and thermal performance factor characteristics in a round tube are reported.... The influences of circular-ring turbulators (CRT) and twisted tape (TT) swirl generators on the heat transfer enhancement, pressure drop and thermal performance factor characteristics in a round tube are reported. The circular-ring turbulators were individually employed and together with the twisted tape swirl generators in the heated section of the tube. Three different pitch ratios (I/D = 1.0, 1.5, and 2.0) of the CRT and three different twist ratios (y/W= 3, 4, and 5) of the TT were introduced. The experiments were conducted using air as the working fluid under a uniform wall heat flux condition, for the Reynolds number between 6000 and 20000. The experimental results reveal that the heat transfer rate, friction factor and thermal performance factor of the combined CRT and qT are considerably higher than those of CRT alone. For the range examined, the Sncreases of mean Nusselt number, friction factor and thermal performance, in the tube equipped with combined devices, respectively, are 25.8%, 82.8% and 6.3% over those in the tube with the CRT alone. The highest thermal performance factor of 1.42 is found for the combined device consisting of the CRT with l/D = 1.0 and TT with y/W= 3. The correlations of the Nusselt number, friction factor and thermal performance factor of the tubes with combined devices are also developed in terms of Reynolds number, Prandtl number, twist ratio and pitch ratio. 展开更多
关键词 heat transfer enhancement circular-ring twisted tape swirl generator TURBULATOR heat exchanger
下载PDF
Performance comparison for oil-water heat transfer of circumferential overlap trisection helical baffle heat exchanger 被引量:2
8
作者 王伟晗 程道来 +1 位作者 刘涛 刘颖昊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2720-2727,共8页
The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and com... The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficient h_o and pressure drop Δp_o both increase while the comprehensive index h_o/Δp_o decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive index h_o/Δp_o of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt number Nu_o and the comprehensive index Nu_o·Eu_(zo)^(-1) increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance. 展开更多
关键词 performance experiments helical baffled heat exchangers circumferential overlap of baffles incline angle of baffle heat transfer enhancement
下载PDF
CFD-Based Optimization of a Shell-and-Tube Heat Exchanger
9
作者 Juanjuan Wang Jiangping Nan Yanan Wang 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2761-2775,共15页
The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then... The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number. 展开更多
关键词 heat exchanger AERODYNAMICS engineeringfluid mechanics tube heat transmission heat transfer model numerical simulation
下载PDF
Analysis of secondary flow in shell-side channel of trisection helix heat exchangers 被引量:3
10
作者 王伟晗 陈亚平 +1 位作者 操瑞兵 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期426-430,共5页
The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid i... The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger. 展开更多
关键词 trisection helix heat exchangers secondary flow Dean vortices heat transfer enhancement flow field analysis
下载PDF
Ammonia corrosion analysis of copper tubes and experimental research on non-copper improvement for heat exchanger in power plant
11
作者 ZENG Zhou-hua LONG Xin-feng LIANG Ping 《Journal of Chemistry and Chemical Engineering》 2009年第12期30-36,共7页
Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analy... Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants. 展开更多
关键词 spirally fluted tube ratchet tube with internal spiralgroove heat transfer enhancement copper corrosion low-pressure preheater oil cooler no copper in heating system
下载PDF
Development and Experimental Study on Heat Exchanger with High Efficiency of Mining Machinery
12
作者 周明连 许淑惠 葛振玉 《International Journal of Mining Science and Technology》 SCIE EI 1999年第2期152-155,共4页
The flow patterns, pressure drop, and heat transfer characteristics of shell and tube heat exchangers with different shell side structure were studied systematically by experiments. Experiments show that the optimal a... The flow patterns, pressure drop, and heat transfer characteristics of shell and tube heat exchangers with different shell side structure were studied systematically by experiments. Experiments show that the optimal angle of helical baffle is 40°, and the optical porosity of porous media is 0. 985. Based on this, a new oil cooler was developed for hydraulic system of mining machinery, and its heat trausfer coefficient is higher than that of the existing oil coolers. 展开更多
关键词 SHELL and tube heat exchanger flow heat transfer augmentation
下载PDF
Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger 被引量:18
13
作者 Wei Liu ZhiChun Liu +1 位作者 YingShuang Wang SuYi Huang 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第10期2952-2959,共8页
The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the co... The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers. 展开更多
关键词 shell-and-tube heat exchanger tube BUNDLE rod BAFFLE vane-type SPOILER core FLOW heat transfer enhancement
原文传递
Airside pressure drop characteristics of three analogous serpentine tube heat exchangers considering heat transfer for aero-engine cooling 被引量:1
14
作者 Yinlong LIU Guoqiang XU +3 位作者 Yanchen FU Jie WEN Shaoshuai QI Lulu LYU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第12期32-46,共15页
This study explores the design,analysis,and air pressure drop assessment of three analogous air–fuel heat exchangers consisting of thin serpentine tube bundles intended for use in high Mach number aero-engines.In hig... This study explores the design,analysis,and air pressure drop assessment of three analogous air–fuel heat exchangers consisting of thin serpentine tube bundles intended for use in high Mach number aero-engines.In high speed flight,the compressor bleed air used to cool high temperature turbine blades and other hot components is too hot.Hence,aviation kerosene is applied to precool the compressor bleed air by means of novel air–fuel heat exchangers.Three light and compact heat exchangers including dozens of in-line thin serpentine tube bundles were designed and manufactured,with little difference existing in aspects of tube pitches and outer diameters among three heat exchangers.The fuel flows inside a series of parallel stainless serpentine tubes(outer diameter:2.2,1.8,1.4 mm with 0.2 mm thickness),while the air externally flows normal to tube bundles and countercurrent with fuel.Experimental studies were carried out to investigate the airside pressure drop characteristics on isothermal states with the variation of air mass flow rates and inlet temperatures.Non-isothermal measurements have also been performed to research the effect of heat transfer on pressure drops.The experimental results show that inlet temperatures have significant influence on pressure drops,and higher temperatures lead to higher pressure drops at the same mass flow rate.The hydraulic resistance coefficient decreases quickly with Reynolds number,and the descent rate slows down when Re>6000 for all three heat exchangers.Additionally,the pressure drop on heat transfer states is less than that on isothermal states for the same average temperatures.Moreover,the pressure drop through heat exchangers is greatly affected by attack angles and transverse pitches,and an asymmetric M-shaped velocity profile is generated in the crosssection of sector channels. 展开更多
关键词 AERO-ENGINE heat exchanger heat transfer Pressure drop Serpentine tube
原文传递
Experimental Study on Convective Heat Transfer in Tube-Side of Water Jacket-Tube Heat Exchanger by Electrohydrodynamics Effect 被引量:2
15
作者 YANG Xia ZHANG Jie WU Yanyang ZHANG Tao MAO Zhihui 《Wuhan University Journal of Natural Sciences》 CAS 2011年第1期49-54,共6页
The electrohydrodynamics (EHD) enhancement of convection heat transfer of water in a jacket tube heat exchanger was studied through an experimental method in this paper. In the experiment,a DC high voltage electrode... The electrohydrodynamics (EHD) enhancement of convection heat transfer of water in a jacket tube heat exchanger was studied through an experimental method in this paper. In the experiment,a DC high voltage electrode was set in the central tube-side of the heat exchanger,and the high voltage electrode in the tube-side was adjustable in the range of 0-40 kV. Five differ-ent combinations of heat transfer enhancement experiments were conducted under the different voltage and rate of flow. The results indicate that the maximal enhancement coefficient θ is 1.224 when the flow rate of tube-side inlet is 0.1 m3/h. It is proved that,for the work medium of water,the convective heat transfer can be enhanced by applying high electric field. The performance of EHD-enhanced is sensitive to the variation of flow rate,and in the same flow rate,there exist an optimized voltage in the EHD-enhanced process ra-ther than the monotonic positive-correlation relationship. 展开更多
关键词 electrohydrodynamics (EHD) heat transfer enhance-ment water jacket-tube heat exchanger convection heat transfer
原文传递
3D Numerical Study on Compound Heat Transfer Enhancement of Converging-diverging Tubes Equipped with Twin Twisted Tapes 被引量:4
16
作者 洪宇翔 邓先和 张连山 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第3期589-601,共13页
The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes (CDs) and converging-diverg)ng tubes.equi.pped with twin counter-swirling twisted tapes... The paper presents a 3D numerical simulation of turbulent heat transfer and flow characteristics in converging-diverging tubes (CDs) and converging-diverg)ng tubes.equi.pped with twin counter-swirling twisted tapes (CDTs). The effects of Reynolds number (Re= 10000-20000), pitch length (P= 11.25, 22.5 mm), rib height (e = 0.5, 0.8, 1.1 ram), pitch ratio (8= 1 " 8, 5 " 4, 8 " 1), gap distance between twin t)visted tapes (b = 0.5, 4.5, 8.5 mm) and tape number (n = 2, 3, 4, 5, 6) on Nusselt number (Nu), Iriction tactor 0') and thermal enhancement factor (r/) are investigated under uniform heat flux conditions,using water as working fluid. In order to illustrate the heat transter and tlu^d tlow mechamsms, flow structures m ~StJs and ~SDIs are presented. The obtained results reveal that all geometric parameters have important effects on the thermal performance of CD and CDT, and both CD and CDT show better thermal performance than plain tube at the constant pumping power. It is also found that the increases in the Nusselt number and friction factor for CDT are, respectively, up to 6.3%-35.7% and 1.75-5.3 times of thecorresponding bare CD. All CDTs have good thermal perbrmance with greater than 1 which indicates that the compound heat transfer technique of CDT is commendable for the maximum enhanced heat transfer rate. 展开更多
关键词 heat transfer enhancement converging-diverging tube twisted tape numerical simulation
下载PDF
Passive heat transfer enhancement of laminar mixed convection flow in a vertical dimpled tube 被引量:3
17
作者 M.TOOFANI SHAHRAKI A.LAVAJOO A.BEHZADMEHR 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3477-3490,共14页
Heat transfer enhancement in vertical tubes plays an important role on the thermal performance of many heat exchangers and thermal devices.In this work,laminar mixed convection of airflow in a vertical dimpled tube wa... Heat transfer enhancement in vertical tubes plays an important role on the thermal performance of many heat exchangers and thermal devices.In this work,laminar mixed convection of airflow in a vertical dimpled tube was numerically investigated.Three-dimensional elliptical governing equations were solved using the finite-volume technique.For a given dimpled pitch,the effects of three different dimple heights(h/D=0.013,0.027,0.037) have been studied at different Richardson numbers(0.1,1.0 and 1.5).The generated vortex in the vicinity of the dimple destructs the thermal boundary layer and enhances the heat transfer.Therefore,lower wall temperature is seen where the dimples are located.Fluid flow velocity at the near-wall region significantly increases because of buoyancy forces with the increase of Richardson numbers.Such an acceleration at the near-wall region makes the dimples more effective at higher Richardson number.Using a dimpled tube enhances the heat transfer coefficient.However,the pressure drop is not important.For instance,in the case of Ri=1.5 and h/D=0.037,20% gains in the heat transfer enhancement only costs2.5% in the pressure loss.In general,it is recommended using a dimpled tube where the effects of buoyancy forces are important. 展开更多
关键词 dimpled tube laminar mixed convection vertical tube heat transfer enhancement
下载PDF
Numerical analysis of heat transfer enhancement on steam condensation in the presence of air outside the tube 被引量:3
18
作者 Wen-Tao Li Xian-Ke Meng +1 位作者 Hao-Zhi Bian Ming Ding 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第8期55-68,共14页
In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat trans... In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%. 展开更多
关键词 Air–steam condensation Numerical simulation heat transfer enhancement Fin tube
下载PDF
Heat Transfer and Flow Resistance Characteristics of Helical Baffle Heat Exchangers with Twisted Oval Tube 被引量:2
19
作者 GU Xin ZHENG Zhiyang +3 位作者 XIONG Xiaochao JIANG Erhui WANG Tongtong ZHANG Dongwei 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第2期370-378,共9页
To overcome the defect of the significant increase in pressure drop when the heat transfer performance of helical baffle heat exchanger is improved,a novel helical baffle heat exchanger with twisted oval tube is propo... To overcome the defect of the significant increase in pressure drop when the heat transfer performance of helical baffle heat exchanger is improved,a novel helical baffle heat exchanger with twisted oval tube is proposed.Numerical simulation was done to exhibit the shell side heat transfer and flow characteristics with CFD software Fluent.The field synergy principle was used to evaluate the shell side performance.The results show that the flow velocity distribution on the shell side of the spiral baffle heat exchanger is more uniform and the velocity near the tube wall increases in the range of research parameters,as the circular tube is replaced by a twisted elliptical tube with the same perimeter length.Moreover,the helical baffle heat exchanger with twisted oval tube has better field synergy of velocity and temperature gradient,velocity and pressure gradient.The helical baffle heat exchanger with helix angle of 15°has better performance than that of circular tube,and its heat transfer coefficient is improved about 3.3%and pressure drop is reduced by 17.1%–19.1%.Hence,the comprehensive heat transfer performance is improved by 21.5%–22.5%.When the helix angle is 20°,the comprehensive heat transfer performance is increased by 16.1%–18.0%with heat transfer coefficient improvement of 3.6%and pressure drop reduction of 13.9%–16.5%. 展开更多
关键词 twisted oval tube helical baffle field synergy principle heat transfer enhancement
原文传递
Pool boiling heat transfer enhancement on porous surface tube 被引量:2
20
作者 LI Yong YAN Changqi SUN Zhongning SUN Licheng 《Nuclear Science and Techniques》 SCIE CAS CSCD 2011年第2期122-128,共7页
The passive residual heat removal exchanger (PRHR HX),which is a key equipment of the passive residual heat removal system,is installed in an elevated pool.Its heat transfer performance affects security and economics ... The passive residual heat removal exchanger (PRHR HX),which is a key equipment of the passive residual heat removal system,is installed in an elevated pool.Its heat transfer performance affects security and economics of the reactor,and boiling heat transfer in the liquid surrounding the exchanger occurs when the liquid saturation temperature exceeded.The smooth tubes,which are widely used as heat transfer tubes in PRHR HX,can be replaced by some enhanced tubes to improve the boiling heat transfer capability.In this paper,the pool boiling heat transfer characteristics of smooth tube and a machined porous surface tube are investigated by using high-pressure steam condensing inside tube as heating source.Compared with smooth tube,the porous surface tube considerably enhances the boiling heat transfer,and shortens the time significantly before reaching the liquid saturation temperature.Its boiling heat transfer coefficient increases from 68% to 75%,and the wall superheat decreases by 1.5oC.Combining effect of condensation inside tube with boiling outside tube,the axial wall temperatures of heat transfer tube are neither uniform nor linear distribution.Based on these investigations,enhance mechanism of the porous surface tube is analyzed. 展开更多
关键词 池沸腾传热 表面多孔管 强化传热 余热排出系统 多孔表面管 饱和液体 沸腾传热系数 温度超标
下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部