期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Selection of organic Rankine cycle working fluid based on unit-heat-exchange-area net power 被引量:1
1
作者 郭美茹 朱启的 +2 位作者 孙志强 周天 周孑民 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1548-1553,共6页
To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net p... To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles(ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area(UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15-363.15 K or443.15-453.15 K, heptane is more suitable at 373.15-423.15 K, and R245 ca is a good option at 483.15-503.15 K. 展开更多
关键词 organic Rankine cycle(ORC) working fluid selection net power heat exchange area
下载PDF
Minimizing investment cost for multi-period heat exchanger network retrofit by matching heat transfer areas with different strategies 被引量:1
2
作者 康丽霞 刘永忠 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第7期1153-1160,共8页
Multi-period heat exchanger network(HEN) retrofit is usually performed by targeting and matching heat transfer areas. In this paper, based on the reverse order matching method we proposed previously, three strategies ... Multi-period heat exchanger network(HEN) retrofit is usually performed by targeting and matching heat transfer areas. In this paper, based on the reverse order matching method we proposed previously, three strategies of matching heat transfer areas are proposed to minimize the investment cost for the retrofit of HEN in multiperiod, in which replacement of heat exchangers, addition of heat exchangers and addition of heat transfer areas are performed. We demonstrate the procedures through three scenarios, including maximum number of substituted heat exchangers after retrofit, minimum additional heat transfer areas in the retrofitted HEN, and minimum investment cost for retrofit. The strategies are extended to a single period HEN retrofit problem. The results of multi-period and single period HEN retro fit problems indicate the effectiveness of the strategies. Moreover, these results are better than those reported in literature. The strategies are simple and easy to implement,which are of great benefit to large-scale HEN retrofit in practice. 展开更多
关键词 heat exchanger networkMulti-period operationRetrofitMatching of heat transfer areas
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部