The ability to measure the very high heat fluxes that typically occur during the hypersonic re-entry phase of space vehicles is generally considered a subject of great importance in the aerospace field.Most of the sen...The ability to measure the very high heat fluxes that typically occur during the hypersonic re-entry phase of space vehicles is generally considered a subject of great importance in the aerospace field.Most of the sensors used for these measurements need to be checked periodically and re-calibrated accordingly.Another bottleneck relates to the need to procure thermal sources that are able to generate reliable reference heat fluxes in the range between 100 and 1000 kW/m^(2)(as order of magnitude).In the present study,a method is presented by which,starting from a calibration system with a capacity of approximately 500 kW/m^(2) only,heat fluxes in the range of interest for hypersonic applications are generated.The related procedure takes advantage of established standards for the characterization of a radiative heat flux.It also builds on the hybrid radiative-convective nature of typical hypersonic heat fluxes and the yet poorly explored possibility to use convective sources of heat to produce high-intensity fluxes.The reliability of such a strategy has been tested using a high enthalpy supersonic flow facility relying on an electric arc-heater and pure Nitrogen as work gas.Stagnation-point heat fluxes have been successfully measured(with reasonable accuracy)in the range between 600 and 1500 kW/m^(2) for values of the centerline enthalpy spanning the interval from to 6 to 24 MJ/kg.展开更多
In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring...In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining.展开更多
The results of researches of condensation processes in the vapour channel similar to the Laval nozzle of short linear heat pipes are presented. Capacitive sensors are additionally installed in cooled top covers of the...The results of researches of condensation processes in the vapour channel similar to the Laval nozzle of short linear heat pipes are presented. Capacitive sensors are additionally installed in cooled top covers of the heat pipes, and electromagnetic pulses were supplied to them from the external generator. At heating the heat pipe evaporator, starting from a certain thermal power threshold value, electromagnetic pulses became modulated. It is related with the formations of the boiling process in the capillary-porous evaporator and large amount of vapour over it. Boiling process results in rapid increase of the pressure under which the average temperature of the evaporator occurs to be less than the boiling temperature of the working fluid under increased pressure. Considering condensation of excess vapour, this leads to repeated initiation and extinction of the boiling process in the evaporator, which reflects in pressure pulsations in the vapour channel. Pressure pulsations cause modulating effect on electromagnetic impulses. Pulsations frequencies are measured as well as their dependence from overheating of the evaporator. Using the capacitive sensors and a special electronic equipment we measured the local thickness of the working fluid at the condensing surface inside the heat pipes. Time-averaged values of the condensate film thickness are measured, depending on the heat load on the capillary-porous evaporator. The measurement error does not exceed 2 × 10–3 mm. It is demonstrated that the condensate film thickness lessens sharply with the increase of the heat load on the evaporator of a Laval-like low-temperature heat pipe, while the heat resistance of the film on the condensing surface reaches 60% of the total heat resistance of heat pipe with the capillary-porous evaporator.展开更多
Flowing with the reform of the hot water heating method in China, heat meter will enter into households in the near future. A portable ultrasonic heat meter is designed in this paper. The meter uses chip microprocesso...Flowing with the reform of the hot water heating method in China, heat meter will enter into households in the near future. A portable ultrasonic heat meter is designed in this paper. The meter uses chip microprocessor MSP430F437 as the data process core, and uses ultrasonic flow sensor to measure flow rate of the hot water, and capture input and output temperatures of the hot water using the thermal resistance sensor Ptl000, and then household energy consumption is calculated via temperature difference between input temperature and output temperature of the hot water multiplied by volume of hot water that is calculated though flow rate integration of hot water. In order to test the performance of the proposed heat meter, experiments is carried out. Both the temperature and flow measurement results satisfy the requirements of accuracy and the heat meter is effective in the heat measurement.展开更多
This examination emphasizes the analysis of thermal transmission of Carreau fluid flow on a permeable sensor surface equipped with radiation,Joule heating,an internal heat source,and a magnetic field.With the above ef...This examination emphasizes the analysis of thermal transmission of Carreau fluid flow on a permeable sensor surface equipped with radiation,Joule heating,an internal heat source,and a magnetic field.With the above effects and assumptions,the equations that administer the flow are formulated.A configured system of equations is productively reduced to a system of ordinary differential equations.The reduced system is then dealt with using the Runge–Kutta-Fehlberg fourth–fifth order tool equipped by the shooting technique.Derived numerical solutions are utilized to plot graphs and tables.The conclusion of the study outlines some important findings such as the power law index,the thermal radiation parameter and the heat source parameter enhance the thermal panel whereas the Weissenberg number deescalates the same.The power law index and permeable velocity decrease the velocity panel significantly.Diagrammatic representation of streamlines of the flow has been given to strengthen the study.A detailed description has been produced about the results obtained in the study.展开更多
文摘The ability to measure the very high heat fluxes that typically occur during the hypersonic re-entry phase of space vehicles is generally considered a subject of great importance in the aerospace field.Most of the sensors used for these measurements need to be checked periodically and re-calibrated accordingly.Another bottleneck relates to the need to procure thermal sources that are able to generate reliable reference heat fluxes in the range between 100 and 1000 kW/m^(2)(as order of magnitude).In the present study,a method is presented by which,starting from a calibration system with a capacity of approximately 500 kW/m^(2) only,heat fluxes in the range of interest for hypersonic applications are generated.The related procedure takes advantage of established standards for the characterization of a radiative heat flux.It also builds on the hybrid radiative-convective nature of typical hypersonic heat fluxes and the yet poorly explored possibility to use convective sources of heat to produce high-intensity fluxes.The reliability of such a strategy has been tested using a high enthalpy supersonic flow facility relying on an electric arc-heater and pure Nitrogen as work gas.Stagnation-point heat fluxes have been successfully measured(with reasonable accuracy)in the range between 600 and 1500 kW/m^(2) for values of the centerline enthalpy spanning the interval from to 6 to 24 MJ/kg.
基金supported by National Natural Science Foundation of China(Grant No.50775210)Liaoning Provincial Natural Science Foundation of China(Grant No.20062143)Liaoning Provincial Universities Science and Technology Program of China(Grant No.05L023)
文摘In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining.
文摘The results of researches of condensation processes in the vapour channel similar to the Laval nozzle of short linear heat pipes are presented. Capacitive sensors are additionally installed in cooled top covers of the heat pipes, and electromagnetic pulses were supplied to them from the external generator. At heating the heat pipe evaporator, starting from a certain thermal power threshold value, electromagnetic pulses became modulated. It is related with the formations of the boiling process in the capillary-porous evaporator and large amount of vapour over it. Boiling process results in rapid increase of the pressure under which the average temperature of the evaporator occurs to be less than the boiling temperature of the working fluid under increased pressure. Considering condensation of excess vapour, this leads to repeated initiation and extinction of the boiling process in the evaporator, which reflects in pressure pulsations in the vapour channel. Pressure pulsations cause modulating effect on electromagnetic impulses. Pulsations frequencies are measured as well as their dependence from overheating of the evaporator. Using the capacitive sensors and a special electronic equipment we measured the local thickness of the working fluid at the condensing surface inside the heat pipes. Time-averaged values of the condensate film thickness are measured, depending on the heat load on the capillary-porous evaporator. The measurement error does not exceed 2 × 10–3 mm. It is demonstrated that the condensate film thickness lessens sharply with the increase of the heat load on the evaporator of a Laval-like low-temperature heat pipe, while the heat resistance of the film on the condensing surface reaches 60% of the total heat resistance of heat pipe with the capillary-porous evaporator.
文摘Flowing with the reform of the hot water heating method in China, heat meter will enter into households in the near future. A portable ultrasonic heat meter is designed in this paper. The meter uses chip microprocessor MSP430F437 as the data process core, and uses ultrasonic flow sensor to measure flow rate of the hot water, and capture input and output temperatures of the hot water using the thermal resistance sensor Ptl000, and then household energy consumption is calculated via temperature difference between input temperature and output temperature of the hot water multiplied by volume of hot water that is calculated though flow rate integration of hot water. In order to test the performance of the proposed heat meter, experiments is carried out. Both the temperature and flow measurement results satisfy the requirements of accuracy and the heat meter is effective in the heat measurement.
基金Department of Science and Technology,Government of India under DST-FIST Program(Ref No.SR/FST/MS-I/2018-2023)for supporting the Department of Mathematics,Kuvempu University,Shankaraghatta。
文摘This examination emphasizes the analysis of thermal transmission of Carreau fluid flow on a permeable sensor surface equipped with radiation,Joule heating,an internal heat source,and a magnetic field.With the above effects and assumptions,the equations that administer the flow are formulated.A configured system of equations is productively reduced to a system of ordinary differential equations.The reduced system is then dealt with using the Runge–Kutta-Fehlberg fourth–fifth order tool equipped by the shooting technique.Derived numerical solutions are utilized to plot graphs and tables.The conclusion of the study outlines some important findings such as the power law index,the thermal radiation parameter and the heat source parameter enhance the thermal panel whereas the Weissenberg number deescalates the same.The power law index and permeable velocity decrease the velocity panel significantly.Diagrammatic representation of streamlines of the flow has been given to strengthen the study.A detailed description has been produced about the results obtained in the study.