期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Heat Transfer Investigation and Modeling of Heat Integrated Distillation Column 被引量:1
1
作者 Fang Jing Wang Yijing +2 位作者 Su Weiyi Xuan Bihan Li Chunli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第3期96-105,共10页
The high degree of reversibility of heat integrated distillation column(HIDiC) has been thermodynamically interpreted by the entropy method. In this paper, a heat transfer model and a more universal method were propos... The high degree of reversibility of heat integrated distillation column(HIDiC) has been thermodynamically interpreted by the entropy method. In this paper, a heat transfer model and a more universal method were proposed, through which the overall heat transfer coefficient at different height of column under different operating conditions could be obtained before the experiment. Then the separation of a binary ethanol-water system was carried out experimentally as a case study to verify the heat transfer model and the aforementioned calculation method. The close results between the calculation, the simulation, and the experiments suggested that the proposed model and the calculation method in this paper were accurate and applicable. Meanwhile, it was demonstrated that the HIDiC shows obvious effect of reducing entropy increase and improving thermodynamic efficiency as compared to conventional distillation column. 展开更多
关键词 heat integrated distillation column heat transfer model separation process
下载PDF
Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation 被引量:13
2
作者 Zhishan Zhang Qingjun Zhang +2 位作者 Guijie Li Meiling Liu Jun Gao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第11期1584-1599,共16页
Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum ... Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum steady-state separation configuration conditions are obtained via taking the total annual cost(TAC) or total reboiler heat duty as the objective functions. The results show that about 27.68% and 25.40% saving in TAC can be achieved by the PSD with full and partial heat integration compared to PSD without heat integration. Second,temperature control tray locations are obtained according to the sensitivity criterion and singular value decomposition(SVD) analysis and the single-end control structure is effective based on the feed composition sensitivity analysis. Finally, the comparison of dynamic controllability is made among various control structures for PSD with partial and full heat integration. It is shown that both control structures of composition/temperature cascade and pressure-compensated temperature have a good dynamic response performance for PSD with heat integration facing feed flowrate and composition disturbances. However, PSD with full heat integration performs the poor controllability despite of a little bit of economy. 展开更多
关键词 Pressure-swing distillation Azeotrope heat integration Dynamic control Methyl acetate/methanol
下载PDF
Optimization and Control of Extractive Distillation with Heat Integration for Separating Benzene/Cyclohexane Mixtures 被引量:3
3
作者 Li Lumin Tu Yangqin +2 位作者 Guo Lianjie Sun Lanyi Tian Yuanyu 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第4期117-127,共11页
In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extracti... In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extractive distillation process is established to achieve minimum energy requirement using the multi-objective genetic algorithm, and the results show that energy saving for this heat integration process is 15.7%. Finally, the control design is performed to investigate the system's dynamic performance, and three control structures are studied. The pressure-compensated temperature control scheme is proposed based on the first two control structures, and the dynamic responses reveal that the feed disturbances in both flow rate and benzene composition can be mitigated well. 展开更多
关键词 extractive distillation heat integration optimization genetic algorithm dynamic simulation
下载PDF
Interpreting the dynamic effect of internal heat integration on reactive distillation columns
4
作者 Yang Yuan Liang Zhang +3 位作者 Haisheng Chen Shaofeng Wang Kejin Huang Huan Shao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第1期89-102,共14页
In this work,the impact of internal heat integration upon process dynamics and controllability by superposing reactive section onto stripping section,relocating feed locations,and redistributing catalyst within the re... In this work,the impact of internal heat integration upon process dynamics and controllability by superposing reactive section onto stripping section,relocating feed locations,and redistributing catalyst within the reactive section is explored based on a hypothetical ideal reactive distillation system containing an exothermic reaction:A + BC + D.Steady state operation analysis and closed-loop controllability evaluation are carried out by comparing the process designs with and without the consideration of internal heat integration.For superposing reactive section onto stripping section,favorable effect is aroused due to its low sensitivities to the changes in operating condition.For ascending the lower feed stage,somewhat detrimental effect occurs because of the accompanied adverse internal heat integration and strong sensitivity to the changes in operating condition.For descending the upper feed stage,serious detrimental effect happens because of the introduced adverse internal heat integration and strong sensitivity to the changes in operating condition.For redistributing catalyst in the reactive section,fairly small negative influence is aroused by the sensitivity to the changes in operating condition.When reinforcing internal heat integration with a combinatorial use of these three strategies,the decent of the upper feed stage should be avoided in process development.Although the conclusions are derived based on the hypothetical ideal reactive distillation column studied,they are considered to be of general significance to the design and operation of other reactive distillation columns. 展开更多
关键词 Reactive distillation column Internal heat integration Process design Process dynamics Process control
下载PDF
A comparative study of different arrangements for methanol distillation process
5
作者 Davood Hajavi Norollah Kasiri Javad Ivakpour 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第9期1201-1212,共12页
The current study presents an effective method of determining and optimizing distillated methanol alternative arrangements. To complement the information required to run the rigorous simulation, Vminmethod is used as ... The current study presents an effective method of determining and optimizing distillated methanol alternative arrangements. To complement the information required to run the rigorous simulation, Vminmethod is used as a base for the selection of the optimum arrangement among different alternatives. Results obtained from Vmindiagram and shortcut simulation are utilized, by means of the simulator, for the precise simulation of alternative arrangements of methanol distillation under optimum conditions. Taking into account target function profit and the process parameters and conditions, the most optimum parameter value for reaching maximum profit was obtained, based on which all the arrangements with or without their heat integration were compared to each other. Technical and economic analysis results indicate, that increased profit by Prefractionator with heat integration arrangement is 4.79% compared to the base arrangement, while the three-column, four-column and five-column arrangements have benefits increase by 3.61%, 3.55% and 3.46%, respectively. 展开更多
关键词 Methanol distillation heat integration Vmindiagram Energy saving Optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部