World-wide urbanization has significantly modified the landscape, which has important climatic implications across all scales due to the simultaneous removal of natural land cover and introduction of urban materials. ...World-wide urbanization has significantly modified the landscape, which has important climatic implications across all scales due to the simultaneous removal of natural land cover and introduction of urban materials. This resulted in a phenomenon known as an urban heat island(UHI). A study on the UHI in Xiamen of China was carried out using remote sensing technology. Satellite thermal infrared images were used to determine surface radiant temperatures. Thermal remote sensing data were obtained from band 6 of two Landsat TM/ETM\++ images of 1989 and 2000 to observe the UHI changes over 11-year period. The thermal infrared bands were processed through several image enhancement technologies. This generated two 3-dimension-perspective images of Xiamen's urban heat island in 1989 and 2000, respectively, and revealed heat characteristics and spatial distribution features of the UHI. To find out the change of the UHI between 1989 and 2000, the two thermal images were first normalized and scaled to seven grades to reduce seasonal difference and then overlaid to produce a difference image by subtracting corresponding pixels. The difference image showed an evident development of the urban heat island in the 11 years. This change was due largely to the urban expansion with a consequent alteration in the ratio of sensible heat flux to latent heat flux. To quantitatively compare UHI, an index called Urban-Heat-Island Ratio Index(URI) was created. It can reveal the intensity of the UHI within the urban area. The calculation of the index was based on the ratio of UHI area to urban area. The greater the index, the more intense the UHI was. The calculation of the index for the Xiamen City indicated that the ratio of UHI area to urban area in 2000 was less than that in 1989. High temperatures in several areas in 1989 were reduced or just disappeared, such as those in old downtown area and Gulangyu Island. For the potential mitigation of the UHI in Xiamen, a long-term heat island reduction strategy of planting shade trees and using light-colored, highly reflective roof and paving materials should be included in the plans of the city planers, environmental managers and other decision-makers to improve the overall urban environment in the future.展开更多
快速城市化形成超大城市导致地表覆盖快速变化,改变地表热平衡,使得城市热环境剧烈变化。以1990s,2000s和2015年这3个时期为研究时相,选取中外6个典型超大城市(北京、上海、广州、伦敦、纽约和东京)为研究对象,多时相Landsat遥感影像为...快速城市化形成超大城市导致地表覆盖快速变化,改变地表热平衡,使得城市热环境剧烈变化。以1990s,2000s和2015年这3个时期为研究时相,选取中外6个典型超大城市(北京、上海、广州、伦敦、纽约和东京)为研究对象,多时相Landsat遥感影像为主要数据源,进行城市热环境变化对比及成因分析。利用普适性单通道算法反演各城市地表温度,计算城市热岛比例指数(urban heat island ratio index,URI)来定量对比研究期间各城市热岛效应时空变化。城市热岛效应对比研究结果表明,1990s—2015年间,北京、上海和东京的URI呈总体上升趋势,广州、伦敦和纽约的URI呈总体下降趋势。到2015年,东京城市热岛效应最严重(URI=0.630),其次是北京、上海、纽约和广州,分别为0.617,0.594,0.555和0.530,伦敦的URI指数最小为0.433。整个研究期间,北京、上海、广州和东京等超大城市均有较大幅度扩张,建成区面积均增加500 km^(2)以上,不透水面面积增加370 km^(2)以上,不断向外蔓延并占用生态用地,加上城市组团间无法形成良好的绿化分隔带,造成城市地表温度等级大幅上升,尤其是新城区热岛效应增强显著;而在老城区通过旧城改造,热环境得到显著改善。伦敦和纽约城市无明显扩张,地表温度变化幅度较小。在今后城市建设中,需注重生态理念,优化城市地表空间格局,提高生态用地效益。展开更多
文摘World-wide urbanization has significantly modified the landscape, which has important climatic implications across all scales due to the simultaneous removal of natural land cover and introduction of urban materials. This resulted in a phenomenon known as an urban heat island(UHI). A study on the UHI in Xiamen of China was carried out using remote sensing technology. Satellite thermal infrared images were used to determine surface radiant temperatures. Thermal remote sensing data were obtained from band 6 of two Landsat TM/ETM\++ images of 1989 and 2000 to observe the UHI changes over 11-year period. The thermal infrared bands were processed through several image enhancement technologies. This generated two 3-dimension-perspective images of Xiamen's urban heat island in 1989 and 2000, respectively, and revealed heat characteristics and spatial distribution features of the UHI. To find out the change of the UHI between 1989 and 2000, the two thermal images were first normalized and scaled to seven grades to reduce seasonal difference and then overlaid to produce a difference image by subtracting corresponding pixels. The difference image showed an evident development of the urban heat island in the 11 years. This change was due largely to the urban expansion with a consequent alteration in the ratio of sensible heat flux to latent heat flux. To quantitatively compare UHI, an index called Urban-Heat-Island Ratio Index(URI) was created. It can reveal the intensity of the UHI within the urban area. The calculation of the index was based on the ratio of UHI area to urban area. The greater the index, the more intense the UHI was. The calculation of the index for the Xiamen City indicated that the ratio of UHI area to urban area in 2000 was less than that in 1989. High temperatures in several areas in 1989 were reduced or just disappeared, such as those in old downtown area and Gulangyu Island. For the potential mitigation of the UHI in Xiamen, a long-term heat island reduction strategy of planting shade trees and using light-colored, highly reflective roof and paving materials should be included in the plans of the city planers, environmental managers and other decision-makers to improve the overall urban environment in the future.
文摘快速城市化形成超大城市导致地表覆盖快速变化,改变地表热平衡,使得城市热环境剧烈变化。以1990s,2000s和2015年这3个时期为研究时相,选取中外6个典型超大城市(北京、上海、广州、伦敦、纽约和东京)为研究对象,多时相Landsat遥感影像为主要数据源,进行城市热环境变化对比及成因分析。利用普适性单通道算法反演各城市地表温度,计算城市热岛比例指数(urban heat island ratio index,URI)来定量对比研究期间各城市热岛效应时空变化。城市热岛效应对比研究结果表明,1990s—2015年间,北京、上海和东京的URI呈总体上升趋势,广州、伦敦和纽约的URI呈总体下降趋势。到2015年,东京城市热岛效应最严重(URI=0.630),其次是北京、上海、纽约和广州,分别为0.617,0.594,0.555和0.530,伦敦的URI指数最小为0.433。整个研究期间,北京、上海、广州和东京等超大城市均有较大幅度扩张,建成区面积均增加500 km^(2)以上,不透水面面积增加370 km^(2)以上,不断向外蔓延并占用生态用地,加上城市组团间无法形成良好的绿化分隔带,造成城市地表温度等级大幅上升,尤其是新城区热岛效应增强显著;而在老城区通过旧城改造,热环境得到显著改善。伦敦和纽约城市无明显扩张,地表温度变化幅度较小。在今后城市建设中,需注重生态理念,优化城市地表空间格局,提高生态用地效益。