The new technology of continuous casting by heated mold was used to produce directional solidification ZA alloy lines to eliminate the inter defects of these lines and increase their mechanical properties. The results...The new technology of continuous casting by heated mold was used to produce directional solidification ZA alloy lines to eliminate the inter defects of these lines and increase their mechanical properties. The results are as follows: (1) The microstruc-ture of the ZA alloy lines is the parallel directional dendritic columnar crystal. Every dendritic crystal of eutectic alloy ZA5 was composed of many layer eutectic β and η phases. The micro structure of hypereutectic ZA alloys is primary dendritic crystal and interdendritic eutectic structure. The primary phase of ZA8 and ZA12 is β, among them, but the primary phase of ZA22 and ZA27 is a. (2) Through the test to the as-cast ZA alloy lines made in continuous casting by heated mold, it is found that the tensile strength and hardness increase greatly, but the elongation decreases. With the increase of aluminum amount from ZA 5 to ZA 12, ZA22 and ZA27, the tensile strength increases gradually. ZA27 has the best comprehensive mechanical properties in these four kinds of ZA alloys. (3) Heat treatment can decrease the dendritic segregation and improve the elongation of ZA alloy, but make their strength decrease slightly.展开更多
A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow...A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.展开更多
By employing a two-dimensional transient thermo-mechanical coupled finite element model for simulating shell heat transfer behaviors within a slab continuous casting mold, we predicted the evolution of shell deformati...By employing a two-dimensional transient thermo-mechanical coupled finite element model for simulating shell heat transfer behaviors within a slab continuous casting mold, we predicted the evolution of shell deformation and the thermal behaviors, including the mold flux film dynamical distribution, the air gap formation, as well as the shell temperature field and the growth of carbon steel solidification, in a 2120 mm × 266 mm slab continuous casting mold. The results show that the shell server deformation occurs in the off-corners in the middle and lower parts of the mold and thus causes the thick mold flux film and air gap to distribute primarily in the regions of 0–140 mm and 0–124 mm and 0–18 mm and 0–10 mm, respectively, from the corners of the wide and narrow faces of the shell under typical casting conditions. As a result, the hot spots, which result from the thick mold flux film filling the shell/mold gap, form in the regions of 20–100 mm from the corners of the wide and narrow faces of the shell and tend to expand as the shell moves downward.展开更多
Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromag...Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromagnetic parameters were obtained from the previous studies. Owing to the induction heating of a high frequency electromagnetic field (20 kHz), the thickness of initial solidification shell decreases, and the temperature of strand surface and slit copper mold increases when compared with the case without the electromagnetic filed. The viscosity of flux de- creases because of the induction heating of the high frequency electromagnetic field, and the dimension of the flux channel increases with electromagnetic pressure; thus, the deformation behavior of initial solidification shell was different before and after the action of high frequency electromagnetic field. Furthermore, the abatement mechanism of oscillation marks under high frequency electromagnetic field was explained.展开更多
To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF_2 was replaced with B_2O_3. Then, the influences of CeO_2 on the heat transfer and the crystallization of the ...To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF_2 was replaced with B_2O_3. Then, the influences of CeO_2 on the heat transfer and the crystallization of the CaF_2-bearing mold flux and the new mold flux with 10 wt% B_2O_3 were studied using a slag film heat flux simulator and X-ray diffraction(XRD). The results revealed that the addition of CeO2 reduced the heat transfer by increasing the solid slag thickness and the crystallization of two mold fluxes. However, CeO_2 had less effect on the B_2O_3-containing mold flux compared with the CaF_2-bearing mold flux. According to the analyses, the CeO_2 contents in the CaF_2-bearing mold flux and the B_2O_3-containing mold flux should not exceed 8 wt% and 12 wt%, respectively. Therefore, these experimental results are beneficial to improve and develop the mold flux for casting rare earth alloy steels.展开更多
The effects of two different heat-treatment atmospheres,nitrogen atmosphere and reducing nitrogen atmosphere with carbon,on the properties of Y2O3-doped aluminum nitride(AlN) ceramics were investigated.The AlN powde...The effects of two different heat-treatment atmospheres,nitrogen atmosphere and reducing nitrogen atmosphere with carbon,on the properties of Y2O3-doped aluminum nitride(AlN) ceramics were investigated.The AlN powder as a raw material was synthesized by self-propagating high-temperature synthesis(SHS) and compacts were fabricated by employing powder injection molding technique.The polymer-wax binder consisted of 60 wt.% paraffin wax(PW),35 wt.% polypropylene(PP),and 5 wt.% stearic acid(SA).After the removal of binder,specimens were sintered at 1850°С in nitrogen atmosphere under atmospheric pressure.To improve the thermal conductivity,sintered samples were reheated.The result reveals that the heat-treatment atmosphere has significant effect on the properties and secondary phase of AlN ceramics.The thermal conductivity and density of AlN ceramics reheated in nitrogen gas are 180 W·m^-1·K^-1 and 3.28 g·cm^-3 and the secondary phase is yttrium aluminate.For the sample reheated in reducing nitrogen atmosphere with carbon,the thermal conductivity and density are 173 W·m^-1·K^-1 and 3.23 g·cm^-3,respectively,and the secondary phase is YN.展开更多
Computer aided design of heat treatment for AISI P20 mold steel with good machinability is attempted to proceed by the commercial software package Thermo-Calc (TCP+DICTRA). Through experimental and theoretical analysi...Computer aided design of heat treatment for AISI P20 mold steel with good machinability is attempted to proceed by the commercial software package Thermo-Calc (TCP+DICTRA). Through experimental and theoretical analysis of phase transformation during heat treatment, further knowledge of designing proper heat treatment is obtained. Then the machinability of AISI P20+Ni steel under given heat treatment condition is studied and the influencing factors to their machinability are analyzed. It is shown that heat treatment designed by computer simulation of carbide transformation is applicable to AISI P20+Ni steel with good machinability; AISI P20+Ni steel with tempered sorbite treated by quenching & tempering has optimal machinability; normalizing at the temperature of 910°C & tempering can avoid cracking and result in acceptable machinability in small thickness module.展开更多
It is important to select suitable parameters of a submerged entry nozzle (SEN) for optimizing the flow and temperature patterns in a mold. The effect of SEN design on the mould level stability, meniscus steel flow ...It is important to select suitable parameters of a submerged entry nozzle (SEN) for optimizing the flow and temperature patterns in a mold. The effect of SEN design on the mould level stability, meniscus steel flow velocity, and heat transfer of the mold of a medium thin slab caster was studied by means of 1:1 water modeling and industrial testing. The advantages of a 2-port SEN compared with a 3-port SEN are the following: more optimal flow patterns with a lower mold level fluctuation and a lower meniscus steel flow velocity; proper powder consumption without slag bears due to a reasonable liquid powder thickness. The argon flow rate can be reduced and the mold average heat flux and temperature near the edges of the copper plate are reduced. At a casting speed of 2.5 m·min^-1, the mold level fluctuation lies within +5 mm. In addition, soft cooling of the steel shell in the mold is realized, which is suitable for casting crack susceptible steel grades.展开更多
Mold fluxes having adaptable properties were developed in the laboratory to solve quality defects, such as depressions and longitudinal cracks when casting hypo-peritectic steel at high casting speed. Firstly, the eff...Mold fluxes having adaptable properties were developed in the laboratory to solve quality defects, such as depressions and longitudinal cracks when casting hypo-peritectic steel at high casting speed. Firstly, the effect of components on the high basicity mold flux properties was first studied using the orthogonal method. In the scope of the studied content, Li2O has the largest effect on the melting temperature, and the least effect on the viscosity; CaF2 has the largest effect on the viscosity, and the least effect on the melting temperature; Na2O and CaO/SiO2 have no obvious influence on the melting temperature and viscosity. Secondly, two powders (Z1 and Z6) have reasonable viscosity-temperature curves, higher solidification temperatures, and porous structure after solidification, but the crystal property of Z6 is worse than that of Z1, and thus Z1 is more suitable for continuous casting hypo-peritectic steel at high casting speed. Thirdly, a higher basicity of powder, a less free enthalpy of crystal compound, and a lower baffle energy are good for a higher tendentiousness of crystal.展开更多
The micropowder injection molding technology was investigated to fabricate the microsized gear wheels on a conventional injection molding machine. The feedstock comprised of carbonyl ferrum powder and a wax-based ther...The micropowder injection molding technology was investigated to fabricate the microsized gear wheels on a conventional injection molding machine. The feedstock comprised of carbonyl ferrum powder and a wax-based thermoplastic binder. Microinjection molding was fulfilled at about 423 K under 100 MPa. The heating system was applied to the die to improve the fluidity of the feedstock and subsequently the cooling system was used to enhance the strength of the green compacts after injection by decreasing the temperature of the die. The gear wheels were realized successfully with their addendum circle diameter ranging from 800 to 200 um and with the center hole as small as 60 um.展开更多
The interior of a high-pressure die-casting is of an unsatisfactory quality. Engine blocks made with this die casting process show lower specific engine performance. Pressure die-casting can hardly be heat treated for...The interior of a high-pressure die-casting is of an unsatisfactory quality. Engine blocks made with this die casting process show lower specific engine performance. Pressure die-casting can hardly be heat treated for obvious reasons. PSM (Precision Sand Molds) process uses sand and organic binder to generate a mold and even allows the manufacturing of complex diesel engine blocks in aluminum alloys. Combined technologies are available for semi-permanent mold castings with cores and castings made in Precision Sand Molds with organic binders. Castings are placed into the special heat treatment furnace immediately after pouring without the operations in stand alone machinery. This patented Sand Lion 3- in-1 technology processes hot castings and carries out three (3) foundry processes simultaneously in one (1) automated machine: 1) De-coring and sand removal; 2) Thermal sand reclamation; 3) Solution heat treatment of castings. The combination of several main casting processes is reflected in significant reductions of energy consumption, of production costs, and improving the quality of the castings. Audits in foundries using the 3-in-l process showed an average reduction in production costs of more than 30%.展开更多
A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures meas...A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures measured using thermocouples buried in different positions of the mold with the original designed cooling system were analyzed to determine the corresponding heat flux profile. This profile was then used for simulation to predict the temperature distribution and the thermal stress distribution of the molds. The predicted temperatures during operation matched the plant measurements. The results showed that the maximum temperature, about 635 K in the wide hot surface, was found about 60 mm below the meniscus and 226 mm from the center of the mold. For the mold with the type I modified design, there was an insignificant decrease in temperature of about 5 K, and for the mold with the type II modified design, the maximum temperature was decreased by about 15 K and the temperature of the hot surface was distributed more uniformly along the length of the mold. The corresponding maximum thermal stress at the hot surface of the mold was reduced from 408 MPa to 386 MPa with the type II modified design. The results indicated that the modified design II is beneficial to the increase of mold life and the quality of casting slabs.展开更多
In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the ...In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the optimized mold flux were compared in a comprehensive way by using analytical measures, such as a slag film heat-flow simulator, a thermowire molten flux crystallization tester and an X-ray diffractometer in the laboratory. The results reveal that one of the major reasons for the cracks is the poor heat transfer ability of the original mold flux. However, the optimized mold flux with a high basicity features a high crystallizing rate,low crystallization temperature and low heat-flow density. Therefore, the optimized mold flux is more suitable for casting peritectic steel by the heavy slab continuous caster. The test results show that the slabs produced by using the optimized mold flux had no surface longitudinal crack in four test casts, while the surface longitudinal crack ratio of the slabs produced by using the original mold flux was 5%. The optimized mold flux can effectively prevent slab surface longitudinal cracks from occurring.展开更多
文摘The new technology of continuous casting by heated mold was used to produce directional solidification ZA alloy lines to eliminate the inter defects of these lines and increase their mechanical properties. The results are as follows: (1) The microstruc-ture of the ZA alloy lines is the parallel directional dendritic columnar crystal. Every dendritic crystal of eutectic alloy ZA5 was composed of many layer eutectic β and η phases. The micro structure of hypereutectic ZA alloys is primary dendritic crystal and interdendritic eutectic structure. The primary phase of ZA8 and ZA12 is β, among them, but the primary phase of ZA22 and ZA27 is a. (2) Through the test to the as-cast ZA alloy lines made in continuous casting by heated mold, it is found that the tensile strength and hardness increase greatly, but the elongation decreases. With the increase of aluminum amount from ZA 5 to ZA 12, ZA22 and ZA27, the tensile strength increases gradually. ZA27 has the best comprehensive mechanical properties in these four kinds of ZA alloys. (3) Heat treatment can decrease the dendritic segregation and improve the elongation of ZA alloy, but make their strength decrease slightly.
文摘A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.
基金financially supported by the National Outstanding Young Scientist Foundation of China (No. 50925415)Fundamental Research Funds for the Central Universities of China (No. N100102001)the Postdoctoral Science Foundation of China (No. 2012M510822)
文摘By employing a two-dimensional transient thermo-mechanical coupled finite element model for simulating shell heat transfer behaviors within a slab continuous casting mold, we predicted the evolution of shell deformation and the thermal behaviors, including the mold flux film dynamical distribution, the air gap formation, as well as the shell temperature field and the growth of carbon steel solidification, in a 2120 mm × 266 mm slab continuous casting mold. The results show that the shell server deformation occurs in the off-corners in the middle and lower parts of the mold and thus causes the thick mold flux film and air gap to distribute primarily in the regions of 0–140 mm and 0–124 mm and 0–18 mm and 0–10 mm, respectively, from the corners of the wide and narrow faces of the shell under typical casting conditions. As a result, the hot spots, which result from the thick mold flux film filling the shell/mold gap, form in the regions of 20–100 mm from the corners of the wide and narrow faces of the shell and tend to expand as the shell moves downward.
基金Item Sponsored by National Natural Science Foundation of China (59734080)
文摘Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromagnetic parameters were obtained from the previous studies. Owing to the induction heating of a high frequency electromagnetic field (20 kHz), the thickness of initial solidification shell decreases, and the temperature of strand surface and slit copper mold increases when compared with the case without the electromagnetic filed. The viscosity of flux de- creases because of the induction heating of the high frequency electromagnetic field, and the dimension of the flux channel increases with electromagnetic pressure; thus, the deformation behavior of initial solidification shell was different before and after the action of high frequency electromagnetic field. Furthermore, the abatement mechanism of oscillation marks under high frequency electromagnetic field was explained.
基金financially supported by the National Natural Science Foundation of China (No. 51774024)
文摘To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF_2 was replaced with B_2O_3. Then, the influences of CeO_2 on the heat transfer and the crystallization of the CaF_2-bearing mold flux and the new mold flux with 10 wt% B_2O_3 were studied using a slag film heat flux simulator and X-ray diffraction(XRD). The results revealed that the addition of CeO2 reduced the heat transfer by increasing the solid slag thickness and the crystallization of two mold fluxes. However, CeO_2 had less effect on the B_2O_3-containing mold flux compared with the CaF_2-bearing mold flux. According to the analyses, the CeO_2 contents in the CaF_2-bearing mold flux and the B_2O_3-containing mold flux should not exceed 8 wt% and 12 wt%, respectively. Therefore, these experimental results are beneficial to improve and develop the mold flux for casting rare earth alloy steels.
基金supported by the National Natural Science Foundation of China(Nos.50025412 and 60576011)the National Key Basic Research and Development Program of China(No.TG2000067203).
文摘The effects of two different heat-treatment atmospheres,nitrogen atmosphere and reducing nitrogen atmosphere with carbon,on the properties of Y2O3-doped aluminum nitride(AlN) ceramics were investigated.The AlN powder as a raw material was synthesized by self-propagating high-temperature synthesis(SHS) and compacts were fabricated by employing powder injection molding technique.The polymer-wax binder consisted of 60 wt.% paraffin wax(PW),35 wt.% polypropylene(PP),and 5 wt.% stearic acid(SA).After the removal of binder,specimens were sintered at 1850°С in nitrogen atmosphere under atmospheric pressure.To improve the thermal conductivity,sintered samples were reheated.The result reveals that the heat-treatment atmosphere has significant effect on the properties and secondary phase of AlN ceramics.The thermal conductivity and density of AlN ceramics reheated in nitrogen gas are 180 W·m^-1·K^-1 and 3.28 g·cm^-3 and the secondary phase is yttrium aluminate.For the sample reheated in reducing nitrogen atmosphere with carbon,the thermal conductivity and density are 173 W·m^-1·K^-1 and 3.23 g·cm^-3,respectively,and the secondary phase is YN.
基金supported by the key project of Science and Technology Commission of Shanghai Local Government(015211010)
文摘Computer aided design of heat treatment for AISI P20 mold steel with good machinability is attempted to proceed by the commercial software package Thermo-Calc (TCP+DICTRA). Through experimental and theoretical analysis of phase transformation during heat treatment, further knowledge of designing proper heat treatment is obtained. Then the machinability of AISI P20+Ni steel under given heat treatment condition is studied and the influencing factors to their machinability are analyzed. It is shown that heat treatment designed by computer simulation of carbide transformation is applicable to AISI P20+Ni steel with good machinability; AISI P20+Ni steel with tempered sorbite treated by quenching & tempering has optimal machinability; normalizing at the temperature of 910°C & tempering can avoid cracking and result in acceptable machinability in small thickness module.
文摘It is important to select suitable parameters of a submerged entry nozzle (SEN) for optimizing the flow and temperature patterns in a mold. The effect of SEN design on the mould level stability, meniscus steel flow velocity, and heat transfer of the mold of a medium thin slab caster was studied by means of 1:1 water modeling and industrial testing. The advantages of a 2-port SEN compared with a 3-port SEN are the following: more optimal flow patterns with a lower mold level fluctuation and a lower meniscus steel flow velocity; proper powder consumption without slag bears due to a reasonable liquid powder thickness. The argon flow rate can be reduced and the mold average heat flux and temperature near the edges of the copper plate are reduced. At a casting speed of 2.5 m·min^-1, the mold level fluctuation lies within +5 mm. In addition, soft cooling of the steel shell in the mold is realized, which is suitable for casting crack susceptible steel grades.
文摘Mold fluxes having adaptable properties were developed in the laboratory to solve quality defects, such as depressions and longitudinal cracks when casting hypo-peritectic steel at high casting speed. Firstly, the effect of components on the high basicity mold flux properties was first studied using the orthogonal method. In the scope of the studied content, Li2O has the largest effect on the melting temperature, and the least effect on the viscosity; CaF2 has the largest effect on the viscosity, and the least effect on the melting temperature; Na2O and CaO/SiO2 have no obvious influence on the melting temperature and viscosity. Secondly, two powders (Z1 and Z6) have reasonable viscosity-temperature curves, higher solidification temperatures, and porous structure after solidification, but the crystal property of Z6 is worse than that of Z1, and thus Z1 is more suitable for continuous casting hypo-peritectic steel at high casting speed. Thirdly, a higher basicity of powder, a less free enthalpy of crystal compound, and a lower baffle energy are good for a higher tendentiousness of crystal.
基金This study was financially supported by the Major State Basic Research Development Program of China (No.2004CB719802)the National High-Tech Research and Development Program of China (No.2006aa03Z113)the Program of the Ministry of Educa-tion of China for Changjiang Scholars and Innovative Research Team in Universities (No.I2P407).
文摘The micropowder injection molding technology was investigated to fabricate the microsized gear wheels on a conventional injection molding machine. The feedstock comprised of carbonyl ferrum powder and a wax-based thermoplastic binder. Microinjection molding was fulfilled at about 423 K under 100 MPa. The heating system was applied to the die to improve the fluidity of the feedstock and subsequently the cooling system was used to enhance the strength of the green compacts after injection by decreasing the temperature of the die. The gear wheels were realized successfully with their addendum circle diameter ranging from 800 to 200 um and with the center hole as small as 60 um.
文摘The interior of a high-pressure die-casting is of an unsatisfactory quality. Engine blocks made with this die casting process show lower specific engine performance. Pressure die-casting can hardly be heat treated for obvious reasons. PSM (Precision Sand Molds) process uses sand and organic binder to generate a mold and even allows the manufacturing of complex diesel engine blocks in aluminum alloys. Combined technologies are available for semi-permanent mold castings with cores and castings made in Precision Sand Molds with organic binders. Castings are placed into the special heat treatment furnace immediately after pouring without the operations in stand alone machinery. This patented Sand Lion 3- in-1 technology processes hot castings and carries out three (3) foundry processes simultaneously in one (1) automated machine: 1) De-coring and sand removal; 2) Thermal sand reclamation; 3) Solution heat treatment of castings. The combination of several main casting processes is reflected in significant reductions of energy consumption, of production costs, and improving the quality of the castings. Audits in foundries using the 3-in-l process showed an average reduction in production costs of more than 30%.
基金financially supported by the National Natural Science Foundation of China(Nos.51525401,51274054,U1332115,51401044)the Science and Technology Planning Project of Dalian(No.2013A16GX110)+1 种基金the China Postdoctoral Science Foundation(2015M581331)the Fundamental Research Funds for the Central Universities
文摘A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures measured using thermocouples buried in different positions of the mold with the original designed cooling system were analyzed to determine the corresponding heat flux profile. This profile was then used for simulation to predict the temperature distribution and the thermal stress distribution of the molds. The predicted temperatures during operation matched the plant measurements. The results showed that the maximum temperature, about 635 K in the wide hot surface, was found about 60 mm below the meniscus and 226 mm from the center of the mold. For the mold with the type I modified design, there was an insignificant decrease in temperature of about 5 K, and for the mold with the type II modified design, the maximum temperature was decreased by about 15 K and the temperature of the hot surface was distributed more uniformly along the length of the mold. The corresponding maximum thermal stress at the hot surface of the mold was reduced from 408 MPa to 386 MPa with the type II modified design. The results indicated that the modified design II is beneficial to the increase of mold life and the quality of casting slabs.
文摘In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the optimized mold flux were compared in a comprehensive way by using analytical measures, such as a slag film heat-flow simulator, a thermowire molten flux crystallization tester and an X-ray diffractometer in the laboratory. The results reveal that one of the major reasons for the cracks is the poor heat transfer ability of the original mold flux. However, the optimized mold flux with a high basicity features a high crystallizing rate,low crystallization temperature and low heat-flow density. Therefore, the optimized mold flux is more suitable for casting peritectic steel by the heavy slab continuous caster. The test results show that the slabs produced by using the optimized mold flux had no surface longitudinal crack in four test casts, while the surface longitudinal crack ratio of the slabs produced by using the original mold flux was 5%. The optimized mold flux can effectively prevent slab surface longitudinal cracks from occurring.