期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Experimental investigations on the heat transfer characteristics of micro heat pipe array applied to flat plate solar collector 被引量:17
1
作者 DENG YueChao QUAN ZhenHua +1 位作者 ZHAO YaoHua WANG LinCheng 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第5期1177-1185,共9页
This paper introduces a novel fiat plate solar collector (FPC) using micro heat pipe array (MHPA) as a key element. To analyze the thermal transfer behavior of flat plate solar collector with micro heat pipe array... This paper introduces a novel fiat plate solar collector (FPC) using micro heat pipe array (MHPA) as a key element. To analyze the thermal transfer behavior of flat plate solar collector with micro heat pipe array (MHPA-FPC), an indoor experiment for thermal transfer characteristic of MHPA applied to FPC was conducted by using an electrical heating film to simulate the solar radiation. Different cooling water flow rates, cooling water temperatures, slopes, and contact thermal resistances be- tween the condenser of MHPA and the heat exchanger were tested at different heating powers. The experimental results in- dicate that MHPA-FPC exhibits the enhanced heat transfer capability with increased cooling water flow rate and temperature. Total thermal resistance has a maximum decline of approximately 10% when the flow rate increases from 180 to 360 L h-1 and 38% when the cooling water temperature increases from 20~C to 40~C. When the inclination angle of MHPA-FPC ex- ceeds 30~, the slope change has a negligible effect on the heat transfer performance of MHPA-FPC. In addition, contact thermal resistance significantly affects the heat transfer capability of MHPA-FPC. The total thermal resistances lowers to nearly half of the original level when contact material between the condenser of MHPA and the heat exchanger changes from conductive silicone to conductive grease. These results could provide useful information for the optimal design and operation of MHPA-FPC. 展开更多
关键词 micro heat pipe array novel fiat plate solar collector heat transfer characteristic cooling water flow rate cooling watertemperature SLOPE contact thermal resistance
原文传递
Numerical and Experimental Investigation on the Performance of Battery Thermal Management System Based on Micro Heat Pipe Array 被引量:4
2
作者 YANG Lulu XU Hongbo +3 位作者 ZHANG Hainan CHEN Yiyu LIU Ming TIAN Changqing 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第5期1531-1541,共11页
Battery thermal management is very crucial for the safe and long-term operation of electric vehicles or hybrid electric vehicles.In this study,numerical simulation method is adopted to simulate the temperature field o... Battery thermal management is very crucial for the safe and long-term operation of electric vehicles or hybrid electric vehicles.In this study,numerical simulation method is adopted to simulate the temperature field of Li-ion battery cell and module.It is proved that the maximum temperature and maximum temperature difference of battery cell and module increase with the increase of charge/discharge rate(C-rate)of the battery.For battery module,it can reach a maximum temperature of 61.1℃at a C-rate of 2 under natural convection condition with the ambient temperature of 20.0℃.A battery thermal management system based on micro heat pipe array(BTMS-MHPA)is deeply investigated.Experiments are conducted to compare the cooling effect on the battery module with different cooling methods,which include natural cooling,only MHPA,MHPA with fan.The maximum temperature of battery module which is cooled by MHPA with a fan is 43.4℃at a C-rate of 2,which is lower than that in the condition of natural cooling.Meanwhile,the maximum temperature difference was also greatly reduced by the application of MHPA cooling.The experimental results confirm that the feasibility and superiority of the BTMS-MHPA for guaranteeing the working temperature range and temperature uniformity of the battery. 展开更多
关键词 battery thermal management micro heat pipe array Li-ion battery temperature field
原文传递
Performance simulation and optimization of new radiant floor heating based on micro heat pipe array 被引量:2
3
作者 Heran Jing Zhenhua Quan +3 位作者 Ruixue Dong Limin Hao Yunhan Liu Yaohua Zhao 《Building Simulation》 SCIE EI CSCD 2022年第7期1295-1308,共14页
This paper proposes two new radiant floor heating structures based on micro heat pipe array(MHPA),namely cement-tile floor and keel-wood floor.The numerical models for these different floor structures are established ... This paper proposes two new radiant floor heating structures based on micro heat pipe array(MHPA),namely cement-tile floor and keel-wood floor.The numerical models for these different floor structures are established and verified by experiments.The temperature distribution and heat transfer process of each part are comprehensively obtained,and the structure is optimized.The results show that the cement-tile floor has the better heat transfer performance of the two.When under the same inlet water temperature and flow rate,the keel-wood floor's surface temperature distribution is about 2℃ lower than that of the cement-tile floor.The inlet water temperature of cement-tile floor is about 10℃ lower than that of keel-wood structure when the floor surface temperature is the same.During a longitudinal heat transfer above MHPA,the floor surface temperature decreases by 0.5℃ for every 10 mm filling layer increase.In order to reduce the non-uniformity of the floor's surface temperature and improve the thermal comfort of the heated room,the optimal structure for a floor is given,with the maximum surface temperature difference reduced by 3.35℃.We used research focusing on new radiant floor heating,with advantages including high efficiency heat transfer,low water supply temperature,simple waterway structure,low resistance and leakage risk,to provide theory and data to support the application of an effective radiant floor heating based on MHPA. 展开更多
关键词 radiant floor heating micro heat pipe array numerical simulation heat transfer
原文传递
Thermal Performance of a Micro Heat Pipe Array for Battery Thermal Management Under Special Vehicle-Operating Conditions 被引量:1
4
作者 Chengning Yao Dan Dan +4 位作者 Yangjun Zhang Yueqi Wang Yuping Qian Yuying Yan Weilin Zhuge 《Automotive Innovation》 CSCD 2020年第4期317-327,共11页
The thermal management of battery systems is critical for maintaining the energy storage capacity,life span,and thermal safety of batteries used in electric vehicles,because the operating temperature is a key factor a... The thermal management of battery systems is critical for maintaining the energy storage capacity,life span,and thermal safety of batteries used in electric vehicles,because the operating temperature is a key factor affecting battery performance.Excessive temperature rises and large temperature differences accelerate the degradation rate of such batteries.Currently,the increasing demand for fast charging and special on-vehicle scenarios has increased the heat dissipation requirements of battery thermal management systems.To address this demand,this work proposes a novel micro heat pipe array(MHPA)for thermal management under a broadened research scope,including high heat generation rates,large tilt angles,mild vibration,and distributed heat generation conditions.The experimental results indicate that the temperature difference is maintained 3.44°C at a large heat generation of 50 W for a limited range of tilt angles.Furthermore,a mild vehicle vibra-tion condition was found to improve temperature uniformity by 3.3°C at a heat generation of 10 W.However,the use of distributed heat sources results in a temperature variation of 3.88°C,suggesting that the heat generation distribution needs to be considered in thermal analyses.Understanding the effects of these special battery-operating conditions on the MHPA could significantly contribute to the enhancement of heat transfer capability and temperature uniformity improvement of battery thermal management systems based on heat pipe technologies.This would facilitate the realization of meeting the higher requirements of future battery systems. 展开更多
关键词 Battery thermal management Thermal performance Micro heat pipe array Operating conditions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部