Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the enti...Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the entire PHP channel.A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer,and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera.The video images were then analyzed to obtain the flow patterns in the PHP.The heat transfer characteristics of the PHPwere discussed based on the flowpatterns and temperature distributions obtainedwith thermocouples.Before starting heating,because of high wettability,large liquid slugs positioned at the evaporator section of the PHP.After starting heating,since the occurrence of boiling divided the large liquid slugs,oscillatory flowof smaller liquid slugs and vapor plugs was found in the PHP.Clear circulation flow of liquid slugs and vapor plugs was observed when the power input to the PHP was larger than 12.0 W.The flow patterns and temperature distributions confirmed that the circulation flow enhanced the heat transfer from the evaporator section to the condenser section of the PHP.In the circulation flow mode,large growth and contraction of vapor plugs were found one after another in all even-numbered PHP channels.However,the analysis of flow patterns clarified that the phase-change heat transfer rate by large growth and contraction of vapor plugs was 19%of the total heat transfer rate of the PHP.Although the generation of large vapor plugs was found in the PHP,most of the heat was transferred by the sensible heat of the working fluid.展开更多
Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels wi...Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range.展开更多
Thermal and fluid-flow characteristics were numerically analyzed for ultra-thin heat pipes.Many studies have been conducted for ultra-thin heat pipes with a centered wick structure,but this study focused on separated ...Thermal and fluid-flow characteristics were numerically analyzed for ultra-thin heat pipes.Many studies have been conducted for ultra-thin heat pipes with a centered wick structure,but this study focused on separated wick structures to increase the evaporation/condensation surface areas within the heat pipe and to reduce the concentration of heat flux within the wick structure.A mathematical heat-pipe model was made in the threedimensional coordinate system,and the model consisted of three regions:a vapor channel,liquid-wick,and container wall regions.The conservation equations for mass,momentum,and energy were solved numerically with boundary conditions by using a code developed by one of the authors.The numerical results with the separated wick structures were compared with those with the centered,which confirmed the effectiveness of the separation of the wick structure.However,the effectiveness of the separation was affected by the position of the separated wick structure.A simple equation was presented to determine the optimum position of the separated wick structures.Numerical analyses were also conducted when the width of the heat pipe was increased with the cooled section,which clarified that the increase in the cooled-section width with the addition of wick structures wasmore effective than the increase in the cooled-section length.A 44%reduction in the total temperature difference of the heat pipe was obtained under the present numerical conditions.Furthermore,a comparison wasmade between experimental results and numerical results.展开更多
Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover...Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover,high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard.Employing pulsating heat pipes(PHPs)is an innovative and useful approach to improving solar panel performance.This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe,while graphene oxide nanofluid with three different concentrations was used as a working fluid to maximize the efficacy of the solar panel.The study proved that the cooling method delivered high efficiency by reducing the temperature,especially in the middle of the day.Using nanofluid graphene oxide at concentrations of 0.2,0.4,and 0.8 gr/lit as the working fluid can reduce the thermal resistance of PHPs by over 30%,24%,and 15%,respectively.This,in turn,enhances the system’s electrical power output by approximately 9%,7%,and 6%,respectively.展开更多
Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working i...Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working in refrigerators and air conditioners.Although FTHE is widely used in commercial products of SHP,previous research on its characteristics is very limited.In this paper,a mathematical model for a SHP with FTHE as the evaporator and plate heat exchanger as the condenser is established and verified with experiments.Parametric analyses are carried out to investigate the influences of evaporator design parameters:air inlet velocity,number of tube rows,tube diameter,and fin pitch.With the increasing of air velocity,number of tube rows and tube diameter,and the decreasing of fin pitch,the heat transfer rate increases,while the energy efficiency ratio(EER)decreases monotonically.Using the total cost of the ten-year life cycle as the performance index,the structure parameters of the evaporator with a given heat transfer rate are optimized by the method of orthogonal experimental design.It is found that the total cost can differ as large as nearly ten times between groups.Among the three factors investigated,the number of tube rows has a significant impact on the total cost of the evaporator.With more tube rows,the total cost will be less.The impacts of fin pitch and tube diameter are insignificant.These results are of practical importance for the engineering design of FTHE in gravity-assisted SHP.展开更多
Miniature cylindrical metal powder sintered wick heat pipe (sintered heat pipe) is an ideal component with super-high thermal efficiency for high heat flux electronics cooling. The sintering process for sintered wic...Miniature cylindrical metal powder sintered wick heat pipe (sintered heat pipe) is an ideal component with super-high thermal efficiency for high heat flux electronics cooling. The sintering process for sintered wick is important for its quality. The sintering process was optimally designed based on the equation of the heat transfer limit of sintered heat pipe. Four-step sintering process was proposed to fabricate sintered wick. The sintering parameters including sintering temperature, sintering time, sintering atmosphere and sintering position were discussed. The experimental results showed that the proper sintering temperature was 950 ℃ for Cu powder of 159μm and 900 ℃ for Cu powders of 81 and 38 μm, respectively, while the wick thickness was 0.45 mm and sintering time was 3 h. The optimized sintering time was 3 h for 0.45 and 0.6 mm wick thickness and 1 h for 0.75 mm wick thickness, respectively, when copper powder diameter was 159μm and sintering temperature was 950 ℃. Redox reduction reaction between H2 and CuO during sintering could produce segmentation cracks in Cu powders as a second structure. Sintering at vertical position can effectively avoid the generation of gap between wick and the inner wall of pipe.展开更多
With the rapid rising of heat flux and reduction of heat dissipating space of microelectronic devises, flattened sintered heat pipe has become an ideal conducting element of use in the electronic cooling field. A manu...With the rapid rising of heat flux and reduction of heat dissipating space of microelectronic devises, flattened sintered heat pipe has become an ideal conducting element of use in the electronic cooling field. A manufacturing technology named phase change flattening process is presented to fabricate the flattened grooved-sintered wick heat pipe (GSHP for short). Deformation geometry of flattened GSHP and the elasto-plastic deformation of flattening process are analyzed theoretically and verified by experiments. The results show that the vapor pressure inside sintered heat pipe during flattening process is determined by the saturated vapor pressure equation; the width and vapor area of flattened heat pipe change greatly as the flattening proceeds; the maximum equivalent strain distributes at the interface between wick and vapor in the fiat section; the buckling phenomenon can be well eliminated when the flattening temperature reaches 480 K; phase change flattening punch load increases with flattening temperature and displacement.展开更多
A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimen...A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimental test for the thermoelectric power generation system is conducted to study the influences of the heat spreader on the temperature uniformity and power generation performance when exposing to a local heat source.In addition,the effects of the heating power, inclination angle, and local heat source size on the power generation performance of the thermoelectric power module using a flat-plate heat pipe as a heat spreader are examined and compared with that using a metal plate.The results indicate that the gravitational flat-plate heat pipe has considerable advantages over the metal plate in the temperature uniformity.The superiority of temperature uniformity in the improvement of power generation performance for the thermoelectric power system using a heat pipe is demonstrated.Particularly, the heat pipe shows good adaptability to placement mode and the local heat source size, which is beneficial to the application in the thermoelectric power generation.展开更多
The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no...The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no other better method to solve this problem. A new method by heating the heat pipe is proposed to eliminate the collapse during the flattening process. The effectiveness of the proposed method is investigated through a theoretical model, a finite element(FE) analysis, and experimental method. Firstly, A theoretical model based on a deformation model of six plastic hinges and the Antoine equation of the working fluid is established to analyze the collapse of thin walls at different temperatures. Then, the FE simulation and experiments of flattening process at different temperatures are carried out and compared with theoretical model. Finally, the FE model is followed to study the loads of the plates at different temperatures and heights of flattened heat pipes. The results of the theoretical model conform to those of the FE simulation and experiments in the flattened zone. The collapse occurs at room temperature. As the temperature increases, the collapse decreases and finally disappears at approximately 130 ℃ for various heights of flattened heat pipes. The loads of the moving plate increase as the temperature increases. Thus, the reasonable temperature for eliminating the collapse and reducing the load is approximately 130℃. The advantage of the proposed method is that the collapse is reduced or eliminated by means of the thermal deformation characteristic of heat pipe itself instead of by external support. As a result, the heat transfer efficiency of heat pipe is raised.展开更多
This work aims to improve the thermal performance of a light emitting diode(LED) module by employing a novelly assembled heat pipe heat sink. The heat pipe was embedded into the heat sink by a phase change expansion a...This work aims to improve the thermal performance of a light emitting diode(LED) module by employing a novelly assembled heat pipe heat sink. The heat pipe was embedded into the heat sink by a phase change expansion assembly(PCEA) process, which was developed by both finite element(FE) analysis and experiments. Heat transfer performance and optical performance of the LED modules were experimentally investigated and discussed. Compared to the LED module with a traditionally assembled heat pipe heat sink, the LED module employing the PCEA process exhibits about 20% decrease in the thermal resistance from the MCPCB to the heat pipe. The junction temperature is 4% lower and the luminous flux is 2% higher. The improvement in the thermal and optical performance is important to the high power LED applications.展开更多
Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and ...Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and non-linear. In this paper, the effects of charging ratio, inclination angle, and heat input and their interaction effects on heat transfer performance of a looped copper-water OHP are analyzed. First, suppose that the relationship between the response and the variables approximates a second-order model. And use the central composite design to arrange the ex- periment. Then, the method of least squares is used to estimate the parameters in the second-order model. Finally, multi- variate variance analysis is used to analyze the model. The results show that the assumption is right, that is to say, the re- lationship is well modeled by a second-order function. Among the three main effect variables, the effect of inclination angle is the most significant, but their interaction effects are not significant. In the range of the considered factors, both the optimum charging ratio and the optimum inclination angle increase as the heating water flow rate increases.展开更多
With the aid of elastic plastic large deformation finite element method (FEM), an elastic plastic and cou pling thermo-mechanical model was built to calculate the bending process of the bent pipe, combining with loc...With the aid of elastic plastic large deformation finite element method (FEM), an elastic plastic and cou pling thermo-mechanical model was built to calculate the bending process of the bent pipe, combining with local heating or cooling of the bent pipe. Based on the FEM simulation, the metal deformation during the bending process was analyzed in detail. The thinning and thickening ratio of the pipe wall thickness, the ovality of the cross section of the pipe and the spring back angle, etc. , are presented.展开更多
As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a loo...As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately.展开更多
A heat resistant aluminum alloy pipe blank with dimensions of d 700/300 mm×1 200 mm was prepared by the multi layer spray deposition technology. Optical microscopy, X ray diffractometry and transmission electron ...A heat resistant aluminum alloy pipe blank with dimensions of d 700/300 mm×1 200 mm was prepared by the multi layer spray deposition technology. Optical microscopy, X ray diffractometry and transmission electron microscopy were used to analyze its morphologies and microstructures. The results show that the microstructures of the pipe blank are homogeneous and the precipitates are uniformly distributed d 25~70 nm spherical or sphere like Al 12 (Fe,V) 3Si particles, its mechanical properties at room temperature and 350 ℃ after densification by extrusion are σ b=412 MPa, δ =7.6% and σ b=187 MPa, δ =7.6%, respectively. The analyses indicate that the proper match of the motion rates of atomizer and substrate can produce deposited blanks with uniform thickness and relatively high cooling rate.展开更多
In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal...In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal protection were introduced. The methods of numerical simulation, theory analysis and experiment research were utilized to analyze the frozen start-up and steady state characteristic of the heat pipe as well as the machining improvement for fabricating irregularly shaped heat pipe which is suitable for leading edge of hypersonic vehicles. The results indicate that the frozen start-up time of heat pipe is long (10 min) and there exists large temperature difference along the heat pipe (47 ℃/cm), but the heat pipe can reduce the temperature in stagnation area of hypersonic vehicles from 1 926 to 982 ℃ and work normally during 1 000-1 200℃. How to improve the maximum heat transfer capability and reduce the time needed for start-up from frozen state of the heat pipe by optimizing thermostructure such as designing of a novel wick with high performance is the key point in hypersonic vehicles thermal protection of heat pipe.展开更多
A thermal model for a heat pipe with axially swallow-tailed microgrooves is developed and analyzed numerically to predict the heat transfer capacity and total thermal resistance.The effect of heat load on the axial di...A thermal model for a heat pipe with axially swallow-tailed microgrooves is developed and analyzed numerically to predict the heat transfer capacity and total thermal resistance.The effect of heat load on the axial distribution of capillary radius,and the effect of working temperature and wick structure on the maximum heat transfer capability,as well as the effect of the heat load and working temperature on the total thermal resistance are all investigated and discussed.It is indicated that the meniscus radius increases non-linearly and slowly at the evaporator and adiabatic section along the axial direction,while increasing drastically at the beginning of the condenser section.The pressure difference in the vapor phase along the axial direction is much smaller than that in the liquid phase.In addition,the heat transfer capacity is deeply affected by the working temperature and the size of the wick.A groove wick structure with a wider groove base width and higher groove depth can enhance the heat transfer capability.The effect of the working temperature on the total thermal resistance is insignificant;however,the total thermal resistance shows dependence upon the heat load.In addition,the accuracy of the model is also verified by the experiment in this paper.展开更多
A suitable model for high-temperature heat pipe startup is a prerequisite to realizing the numerical simula-tion for the heat pipe cooled reactor startup from the cold state.It is required that this model not only des...A suitable model for high-temperature heat pipe startup is a prerequisite to realizing the numerical simula-tion for the heat pipe cooled reactor startup from the cold state.It is required that this model not only describes the transient behavior during the startup period,but also reduces the computing resources of the heat pipe cooled reactor simulation in the simplest way.In this study,a simplified model that integrates the two-zone and network models is proposed.In this model,vapor flow in the vapor space,evaporation,and condensation in the vapor–liquid interface are decoupled with heat conduction to achieve a fast calculation of the transient characteristics of the heat pipe.An experimental system for a high-temperature heat pipe was developed to validate the proposed model.A potassium heat pipe was utilized as the experimental material.Startup experiments were performed with differ-ent heating powers.Compared with the experimental results,the accuracy of the proposed model was verified.Moreover,the proposed model can predict the vapor flow,pressure drop,and temperature drop in the vapor space.As indicated by the analysis results,the essential requirements for successful startup are also determined.The heat pipe cannot achieve a successful startup until the heating power satisfies these requirements.All the discussions indicate the capability of the proposed model for the simulation of a high-temperature heat pipe startup from the frozen state;hence,can act as a basic tool for the heat pipe cooled reactor simulation.展开更多
Nanotechnology is widely used in heat transfer devices to improve thermal performance.Nanofluids can be applied in heat pipes to decrease thermal resistance and achieve a higher heat transfer capability.In the present...Nanotechnology is widely used in heat transfer devices to improve thermal performance.Nanofluids can be applied in heat pipes to decrease thermal resistance and achieve a higher heat transfer capability.In the present article,a comprehensive literature review is performed on the nanofluids’ applications in heat pipes.Based on reviewed studies,nanofluids have a high capacity to boost the thermal behavior of various types of heat pipes such as conventional heat pipes,pulsating heat pipes,and thermosyphons.Besides,it is observed that there must be a selected amount of concentration for the high-performance utilization of nanoparticles;high concentration of nanoparticles causes a higher thermal resistance which is mainly attributed to increment in the dynamic viscosity and the higher possibility of particles’ agglomeration.Enhancement in heat transfer performance is the result of increasing in nucleation sites and the intrinsically greater nanofluids’ thermal conductivity.展开更多
In this paper,we take the mid-temperature gravity heat pipe exchanger as the research object,simulate the fluid flow field,temperature field and the working state of heat pipe in the heat exchanger by Fluent software....In this paper,we take the mid-temperature gravity heat pipe exchanger as the research object,simulate the fluid flow field,temperature field and the working state of heat pipe in the heat exchanger by Fluent software.The effects of different operating parameters and fin parameters on the heat transfer performance of heat exchangers are studied.The results show that the heat transfer performance of the mid-temperature gravity heat pipe exchanger is the best when the fin spacing is between 5 mm and 6 mm,the height of the heat pipe is between 12 mm and 13 mm,and the inlet velocity of the fluid is between 2.5 m/s to 3 m/s.展开更多
Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved...Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations.展开更多
基金supported by JSPS KAKENHI Grant Number 22K03947.
文摘Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the entire PHP channel.A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer,and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera.The video images were then analyzed to obtain the flow patterns in the PHP.The heat transfer characteristics of the PHPwere discussed based on the flowpatterns and temperature distributions obtainedwith thermocouples.Before starting heating,because of high wettability,large liquid slugs positioned at the evaporator section of the PHP.After starting heating,since the occurrence of boiling divided the large liquid slugs,oscillatory flowof smaller liquid slugs and vapor plugs was found in the PHP.Clear circulation flow of liquid slugs and vapor plugs was observed when the power input to the PHP was larger than 12.0 W.The flow patterns and temperature distributions confirmed that the circulation flow enhanced the heat transfer from the evaporator section to the condenser section of the PHP.In the circulation flow mode,large growth and contraction of vapor plugs were found one after another in all even-numbered PHP channels.However,the analysis of flow patterns clarified that the phase-change heat transfer rate by large growth and contraction of vapor plugs was 19%of the total heat transfer rate of the PHP.Although the generation of large vapor plugs was found in the PHP,most of the heat was transferred by the sensible heat of the working fluid.
基金supported by JSPS KAKENHI Grant Number 22K03947.
文摘Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range.
文摘Thermal and fluid-flow characteristics were numerically analyzed for ultra-thin heat pipes.Many studies have been conducted for ultra-thin heat pipes with a centered wick structure,but this study focused on separated wick structures to increase the evaporation/condensation surface areas within the heat pipe and to reduce the concentration of heat flux within the wick structure.A mathematical heat-pipe model was made in the threedimensional coordinate system,and the model consisted of three regions:a vapor channel,liquid-wick,and container wall regions.The conservation equations for mass,momentum,and energy were solved numerically with boundary conditions by using a code developed by one of the authors.The numerical results with the separated wick structures were compared with those with the centered,which confirmed the effectiveness of the separation of the wick structure.However,the effectiveness of the separation was affected by the position of the separated wick structure.A simple equation was presented to determine the optimum position of the separated wick structures.Numerical analyses were also conducted when the width of the heat pipe was increased with the cooled section,which clarified that the increase in the cooled-section width with the addition of wick structures wasmore effective than the increase in the cooled-section length.A 44%reduction in the total temperature difference of the heat pipe was obtained under the present numerical conditions.Furthermore,a comparison wasmade between experimental results and numerical results.
文摘Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover,high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard.Employing pulsating heat pipes(PHPs)is an innovative and useful approach to improving solar panel performance.This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe,while graphene oxide nanofluid with three different concentrations was used as a working fluid to maximize the efficacy of the solar panel.The study proved that the cooling method delivered high efficiency by reducing the temperature,especially in the middle of the day.Using nanofluid graphene oxide at concentrations of 0.2,0.4,and 0.8 gr/lit as the working fluid can reduce the thermal resistance of PHPs by over 30%,24%,and 15%,respectively.This,in turn,enhances the system’s electrical power output by approximately 9%,7%,and 6%,respectively.
基金supported by Archaeological Artifact Protection Technology Project of Zhejiang Province(NO2021013).
文摘Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working in refrigerators and air conditioners.Although FTHE is widely used in commercial products of SHP,previous research on its characteristics is very limited.In this paper,a mathematical model for a SHP with FTHE as the evaporator and plate heat exchanger as the condenser is established and verified with experiments.Parametric analyses are carried out to investigate the influences of evaporator design parameters:air inlet velocity,number of tube rows,tube diameter,and fin pitch.With the increasing of air velocity,number of tube rows and tube diameter,and the decreasing of fin pitch,the heat transfer rate increases,while the energy efficiency ratio(EER)decreases monotonically.Using the total cost of the ten-year life cycle as the performance index,the structure parameters of the evaporator with a given heat transfer rate are optimized by the method of orthogonal experimental design.It is found that the total cost can differ as large as nearly ten times between groups.Among the three factors investigated,the number of tube rows has a significant impact on the total cost of the evaporator.With more tube rows,the total cost will be less.The impacts of fin pitch and tube diameter are insignificant.These results are of practical importance for the engineering design of FTHE in gravity-assisted SHP.
基金Project(50905119)supported by the National Natural Science Foundation of ChinaProject(20120171120036)supported by New Teachers'Fund for Doctor Stations,Ministry of Education,ChinaProject(S2012040007715)supported by Natural Science Foundation of Guangdong Province,China
文摘Miniature cylindrical metal powder sintered wick heat pipe (sintered heat pipe) is an ideal component with super-high thermal efficiency for high heat flux electronics cooling. The sintering process for sintered wick is important for its quality. The sintering process was optimally designed based on the equation of the heat transfer limit of sintered heat pipe. Four-step sintering process was proposed to fabricate sintered wick. The sintering parameters including sintering temperature, sintering time, sintering atmosphere and sintering position were discussed. The experimental results showed that the proper sintering temperature was 950 ℃ for Cu powder of 159μm and 900 ℃ for Cu powders of 81 and 38 μm, respectively, while the wick thickness was 0.45 mm and sintering time was 3 h. The optimized sintering time was 3 h for 0.45 and 0.6 mm wick thickness and 1 h for 0.75 mm wick thickness, respectively, when copper powder diameter was 159μm and sintering temperature was 950 ℃. Redox reduction reaction between H2 and CuO during sintering could produce segmentation cracks in Cu powders as a second structure. Sintering at vertical position can effectively avoid the generation of gap between wick and the inner wall of pipe.
基金Project(50905119)supported by the National Natural Science Foundation of ChinaProject(2012M510205)supported by China Postdoctoral Science Foundation+1 种基金Project(PEMT1206)supported by the Open Foundation of Guangdong Province Key Laboratory of Precision Equipment and Manufacturing Technology,ChinaProject(S2012040007715)supported by Natural Science Foundation of Guangdong Province,China
文摘With the rapid rising of heat flux and reduction of heat dissipating space of microelectronic devises, flattened sintered heat pipe has become an ideal conducting element of use in the electronic cooling field. A manufacturing technology named phase change flattening process is presented to fabricate the flattened grooved-sintered wick heat pipe (GSHP for short). Deformation geometry of flattened GSHP and the elasto-plastic deformation of flattening process are analyzed theoretically and verified by experiments. The results show that the vapor pressure inside sintered heat pipe during flattening process is determined by the saturated vapor pressure equation; the width and vapor area of flattened heat pipe change greatly as the flattening proceeds; the maximum equivalent strain distributes at the interface between wick and vapor in the fiat section; the buckling phenomenon can be well eliminated when the flattening temperature reaches 480 K; phase change flattening punch load increases with flattening temperature and displacement.
基金Supported by the National Natural Science Foundation of China(U1737104)the Natural Science Foundation of Jiangsu Province(BK20170082)+1 种基金the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)(U1501501)the Postgraduate Research&Practice Innovation Program of Jiangsu Province
文摘A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimental test for the thermoelectric power generation system is conducted to study the influences of the heat spreader on the temperature uniformity and power generation performance when exposing to a local heat source.In addition,the effects of the heating power, inclination angle, and local heat source size on the power generation performance of the thermoelectric power module using a flat-plate heat pipe as a heat spreader are examined and compared with that using a metal plate.The results indicate that the gravitational flat-plate heat pipe has considerable advantages over the metal plate in the temperature uniformity.The superiority of temperature uniformity in the improvement of power generation performance for the thermoelectric power system using a heat pipe is demonstrated.Particularly, the heat pipe shows good adaptability to placement mode and the local heat source size, which is beneficial to the application in the thermoelectric power generation.
基金supported by National Natural Science Foundation of China(Grant Nos. 50975096, 51175186)Guangdong Provincial Natural Science Foundation of China(Grant No. S2011010002225)+1 种基金Guangdong Provincial Science and Technology Planning Project of China(GrantNos. 2010A080802009, 2010A011300022, 2011B040300020)Fundamental Research Funds for the Central Universities of China(GrantNo.2012ZZ0053)
文摘The collapse of thin-walled micro-grooved heat pipes is a common phenomenon in the tube flattening process, which seriously influences the heat transfer performance and appearance of heat pipe. At present, there is no other better method to solve this problem. A new method by heating the heat pipe is proposed to eliminate the collapse during the flattening process. The effectiveness of the proposed method is investigated through a theoretical model, a finite element(FE) analysis, and experimental method. Firstly, A theoretical model based on a deformation model of six plastic hinges and the Antoine equation of the working fluid is established to analyze the collapse of thin walls at different temperatures. Then, the FE simulation and experiments of flattening process at different temperatures are carried out and compared with theoretical model. Finally, the FE model is followed to study the loads of the plates at different temperatures and heights of flattened heat pipes. The results of the theoretical model conform to those of the FE simulation and experiments in the flattened zone. The collapse occurs at room temperature. As the temperature increases, the collapse decreases and finally disappears at approximately 130 ℃ for various heights of flattened heat pipes. The loads of the moving plate increase as the temperature increases. Thus, the reasonable temperature for eliminating the collapse and reducing the load is approximately 130℃. The advantage of the proposed method is that the collapse is reduced or eliminated by means of the thermal deformation characteristic of heat pipe itself instead of by external support. As a result, the heat transfer efficiency of heat pipe is raised.
基金Projects(51375177,U1401249,51405161)supported by the National Natural Science Foundation of ChinaProject(2014M560659)supported by the Postdoctoral Science Foundation of ChinaProject(2014B090901065)supported by the Science and Technology Planning Project for Industry-University-Research Cooperation in Guangdong Province,China
文摘This work aims to improve the thermal performance of a light emitting diode(LED) module by employing a novelly assembled heat pipe heat sink. The heat pipe was embedded into the heat sink by a phase change expansion assembly(PCEA) process, which was developed by both finite element(FE) analysis and experiments. Heat transfer performance and optical performance of the LED modules were experimentally investigated and discussed. Compared to the LED module with a traditionally assembled heat pipe heat sink, the LED module employing the PCEA process exhibits about 20% decrease in the thermal resistance from the MCPCB to the heat pipe. The junction temperature is 4% lower and the luminous flux is 2% higher. The improvement in the thermal and optical performance is important to the high power LED applications.
基金Supported by the Natural Science Foundation of Ministry of Education of Jiangsu Province (02KJB470001).
文摘Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and non-linear. In this paper, the effects of charging ratio, inclination angle, and heat input and their interaction effects on heat transfer performance of a looped copper-water OHP are analyzed. First, suppose that the relationship between the response and the variables approximates a second-order model. And use the central composite design to arrange the ex- periment. Then, the method of least squares is used to estimate the parameters in the second-order model. Finally, multi- variate variance analysis is used to analyze the model. The results show that the assumption is right, that is to say, the re- lationship is well modeled by a second-order function. Among the three main effect variables, the effect of inclination angle is the most significant, but their interaction effects are not significant. In the range of the considered factors, both the optimum charging ratio and the optimum inclination angle increase as the heating water flow rate increases.
基金Item Sponsored by National Natural Science Foundation of China (50435010) and National"973"Project of China(2004CCA06600)
文摘With the aid of elastic plastic large deformation finite element method (FEM), an elastic plastic and cou pling thermo-mechanical model was built to calculate the bending process of the bent pipe, combining with local heating or cooling of the bent pipe. Based on the FEM simulation, the metal deformation during the bending process was analyzed in detail. The thinning and thickening ratio of the pipe wall thickness, the ovality of the cross section of the pipe and the spring back angle, etc. , are presented.
基金Project(531107040300) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(2006BAJ04B04) supported by the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period of China
文摘As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately.
文摘A heat resistant aluminum alloy pipe blank with dimensions of d 700/300 mm×1 200 mm was prepared by the multi layer spray deposition technology. Optical microscopy, X ray diffractometry and transmission electron microscopy were used to analyze its morphologies and microstructures. The results show that the microstructures of the pipe blank are homogeneous and the precipitates are uniformly distributed d 25~70 nm spherical or sphere like Al 12 (Fe,V) 3Si particles, its mechanical properties at room temperature and 350 ℃ after densification by extrusion are σ b=412 MPa, δ =7.6% and σ b=187 MPa, δ =7.6%, respectively. The analyses indicate that the proper match of the motion rates of atomizer and substrate can produce deposited blanks with uniform thickness and relatively high cooling rate.
基金Project(51076062) supported by the National Natural Science Foundation of China
文摘In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal protection were introduced. The methods of numerical simulation, theory analysis and experiment research were utilized to analyze the frozen start-up and steady state characteristic of the heat pipe as well as the machining improvement for fabricating irregularly shaped heat pipe which is suitable for leading edge of hypersonic vehicles. The results indicate that the frozen start-up time of heat pipe is long (10 min) and there exists large temperature difference along the heat pipe (47 ℃/cm), but the heat pipe can reduce the temperature in stagnation area of hypersonic vehicles from 1 926 to 982 ℃ and work normally during 1 000-1 200℃. How to improve the maximum heat transfer capability and reduce the time needed for start-up from frozen state of the heat pipe by optimizing thermostructure such as designing of a novel wick with high performance is the key point in hypersonic vehicles thermal protection of heat pipe.
基金Supported by the 11th Five Year National Science and Technology Support Key Project of China(2008BAJ12B02)
文摘A thermal model for a heat pipe with axially swallow-tailed microgrooves is developed and analyzed numerically to predict the heat transfer capacity and total thermal resistance.The effect of heat load on the axial distribution of capillary radius,and the effect of working temperature and wick structure on the maximum heat transfer capability,as well as the effect of the heat load and working temperature on the total thermal resistance are all investigated and discussed.It is indicated that the meniscus radius increases non-linearly and slowly at the evaporator and adiabatic section along the axial direction,while increasing drastically at the beginning of the condenser section.The pressure difference in the vapor phase along the axial direction is much smaller than that in the liquid phase.In addition,the heat transfer capacity is deeply affected by the working temperature and the size of the wick.A groove wick structure with a wider groove base width and higher groove depth can enhance the heat transfer capability.The effect of the working temperature on the total thermal resistance is insignificant;however,the total thermal resistance shows dependence upon the heat load.In addition,the accuracy of the model is also verified by the experiment in this paper.
基金This work was supported by the National Key Research and Development Project of China(No.2020YFB1901700)Science Challenge Project(No.TZ2018001)+1 种基金the National Natural Science Foundation of China(Nos.11775126 and 11775127)the Tsinghua University Initiative Scientific Research Program.
文摘A suitable model for high-temperature heat pipe startup is a prerequisite to realizing the numerical simula-tion for the heat pipe cooled reactor startup from the cold state.It is required that this model not only describes the transient behavior during the startup period,but also reduces the computing resources of the heat pipe cooled reactor simulation in the simplest way.In this study,a simplified model that integrates the two-zone and network models is proposed.In this model,vapor flow in the vapor space,evaporation,and condensation in the vapor–liquid interface are decoupled with heat conduction to achieve a fast calculation of the transient characteristics of the heat pipe.An experimental system for a high-temperature heat pipe was developed to validate the proposed model.A potassium heat pipe was utilized as the experimental material.Startup experiments were performed with differ-ent heating powers.Compared with the experimental results,the accuracy of the proposed model was verified.Moreover,the proposed model can predict the vapor flow,pressure drop,and temperature drop in the vapor space.As indicated by the analysis results,the essential requirements for successful startup are also determined.The heat pipe cannot achieve a successful startup until the heating power satisfies these requirements.All the discussions indicate the capability of the proposed model for the simulation of a high-temperature heat pipe startup from the frozen state;hence,can act as a basic tool for the heat pipe cooled reactor simulation.
文摘Nanotechnology is widely used in heat transfer devices to improve thermal performance.Nanofluids can be applied in heat pipes to decrease thermal resistance and achieve a higher heat transfer capability.In the present article,a comprehensive literature review is performed on the nanofluids’ applications in heat pipes.Based on reviewed studies,nanofluids have a high capacity to boost the thermal behavior of various types of heat pipes such as conventional heat pipes,pulsating heat pipes,and thermosyphons.Besides,it is observed that there must be a selected amount of concentration for the high-performance utilization of nanoparticles;high concentration of nanoparticles causes a higher thermal resistance which is mainly attributed to increment in the dynamic viscosity and the higher possibility of particles’ agglomeration.Enhancement in heat transfer performance is the result of increasing in nucleation sites and the intrinsically greater nanofluids’ thermal conductivity.
文摘In this paper,we take the mid-temperature gravity heat pipe exchanger as the research object,simulate the fluid flow field,temperature field and the working state of heat pipe in the heat exchanger by Fluent software.The effects of different operating parameters and fin parameters on the heat transfer performance of heat exchangers are studied.The results show that the heat transfer performance of the mid-temperature gravity heat pipe exchanger is the best when the fin spacing is between 5 mm and 6 mm,the height of the heat pipe is between 12 mm and 13 mm,and the inlet velocity of the fluid is between 2.5 m/s to 3 m/s.
基金Project(U0834002) supported by the Joint Funds of the National Nature Science Foundation of China and Guangdong ProvinceProject (2009ZM0134) supported by the Foundational Research Funds for the Central Universities in China
文摘Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations.