The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, ...The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, the major obstacle hindering the utilization of this technology is the high initial cost, especially for the installation of ground coupled heat exchanger. The horizontal closed-loop system offers lower installation cost, as it requires no vertical borehole construction. Instead, the heat exchangers can be installed in shallow trenches that may be excavated, by small excavator or even by human labor. This paper presents the comparison of two different heat exchangers, namely, the capillary mat and the widely used slinky pipe. Both heat exchangers are connected to a heat pump, where continuous heating tests were carried out for 165 hours (~7 days) for each configuration. The purpose of this research is to show the performance of capillary mat in comparison to slinky pipe. Despite during the entire test for capillary mat required 6% higher electricity consumption, compared to slinky heat exchanger, the results still suggest the potential use of capillary mat as alternative to slinky heat exchanger. Additionally, the results also highlight the high hydraulic resistance of installed capillary mat heat exchangers may become the major disadvantage of the capillary mat.展开更多
In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is o...In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.展开更多
To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an impr...To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.展开更多
This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calcu...This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calculation and experiment.The results show that the average absolute error is less than 0.6 ℃ and the relative error is less than 5% under the pulse load when the analytical solution to the 2-D solid cylindrical source model is used for the SAGSHPS.The coefficient of performance (COP) of the SAGSHPS is 2.95-4.70.The average fluid temperature in the borehole heat exchanger can increase by 3 ℃ with the assistance of solar collector,which will improve the COP of the heat pump by approximately 10% from the experimental data.The energy contributions to the total heating load of soil,electricity and solar are 56.30%,36.87% and 6.83%,respectively.展开更多
Due to the high energy consumption for separation of salt containing methanol wastewater, in this work, the multi-effect evaporation coupled with mechanical vapor recompression (MVR) heat pump and thermal integration ...Due to the high energy consumption for separation of salt containing methanol wastewater, in this work, the multi-effect evaporation coupled with mechanical vapor recompression (MVR) heat pump and thermal integration technologies were raised for the first time. The ELECNRTL thermodynamic model is used to simulate and optimize the evaporation rectification process. Energy consumption and total annual cost (TAC) are taken as objective functions. The results show that multi-effect evaporation coupled with conventional distillation process can save energy consumption and TAC by 44.12% and 39.14%. The multi-effect evaporation coupled with distillation process based on MVR heat pump technology can save energy consumption and TAC by 55.27% and 47.49%, which is super to three-effect evaporation coupled with conventional distillation process. The three-effect evaporation coupled with MVR heat integration process can save energy consumption and TAC by 81.32% and 58.55%, which is more economical than other processes. It can be clearly seen that three-effect evaporation coupled with MVR heat integration process is more competitive to deal with the salt containing methanol wastewater.展开更多
In this paper,the single hole heat transfer power of the ground source heat pump system in Hengshui is compared with data gained from thermal response test.The results show that maximum monitoring data of heat transfe...In this paper,the single hole heat transfer power of the ground source heat pump system in Hengshui is compared with data gained from thermal response test.The results show that maximum monitoring data of heat transfer power per meter in summer is 97.1% of the test data,and the average value accounts for 81.8%.The per meter heat power data through on-site thermal response test can provide references for designing engineering project and optimizing ground source heat pump system as these data do not vary greatly from the actual monitoring data.展开更多
Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly ...Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.展开更多
The consumption of cooling and heating energy and the methods of heating and cooling used in large public buildings are analyzed in this paper. A comparison between initial investment and operation costs of heat pump ...The consumption of cooling and heating energy and the methods of heating and cooling used in large public buildings are analyzed in this paper. A comparison between initial investment and operation costs of heat pump and traditional heating modes used in large public buildings is also introduced. A life cycle cost (LCC) mathematical model is established to analyze the main factors that affect the LCC including the advantages and disadvantages of heat pumps currently in use. Some suggestions about heating and cooling modes applied in large buildings in different geographical areas are given in this paper.展开更多
This paper uses FLUENT software building the three-dimensional unsteady state model of ground source heat pump single U and double U underground pipe to study on heat exchange of underground pipe system in the conditi...This paper uses FLUENT software building the three-dimensional unsteady state model of ground source heat pump single U and double U underground pipe to study on heat exchange of underground pipe system in the condition of unsteady state long-term continuous running, analyzes the change of soil temperature filed around underground pipe and performance of underground pipe heat exchange between single U and double U pipe system. The results show that double U pipe system is better than single U system, which can improve unit depth heat exchange efficiency, reduce the number of wells and reduce the initial investment.展开更多
A Geothermal Heat Pump (GHP) system is known to have enormous potential for building energy savings and the reduction of associated greenhouse gas emissions, due to its high Coefficient Of Performance (COP). The use o...A Geothermal Heat Pump (GHP) system is known to have enormous potential for building energy savings and the reduction of associated greenhouse gas emissions, due to its high Coefficient Of Performance (COP). The use of a GHP system in cold-climate regions is more attractive owing to its higher COP for heating compared to conventional heating devices, such as furnaces or boilers. Many factors, however, determine the operational performance of an existing GHP system, such as control strategy, part/full-load efficiency, the age of the system, defective parts, and whether or not regular maintenance services are provided. The omitting of any of these factors in design and operation stages could have significant impacts on the normal operation of GHP systems. Therefore, the objectives of this paper are to further investigate and study the existing GHP systems currently used in buildings located in cold-climate regions of the US, in terms of system operational performance, potential energy and energy cost savings, system cost information, the reasons for installing geothermal systems, current operating difficulties, and owner satisfaction to date. After the comprehensive investigation and in-depth analysis of 24 buildings, the results indicate that for these buildings, about 75% of the building owners are very satisfied with their GHP systems in terms of noise, cost, and indoor comfort. About 71% of the investigated GHP systems have not had serious operating difficulties, and about 85% of the respondents (building owners) would suggest this type of system to other people. Compared to the national median of energy use and energy cost of typical buildings of the same type nationwide, the overall performance of the actual GHP systems used in the cold-climate regions is slightly better, i.e. about 7.2% energy savings and 6.1% energy cost savings on average.展开更多
Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar ene...Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period.展开更多
The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that...The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that there is a great potential for low-temperature heat recovery and utilization.This article provided a detailed review of recent advances in the development of low-temperature thermal upgrades,power generation,refrigeration,and thermal energy storage.The detailed description will be given from the aspects of system structure improvement,work medium improvement,and thermodynamic and economic performance evaluation.It also pointed out the development bottlenecks and future development trends of various technologies.The low-temperature heat combined utilization technology can recover waste heat in an all-round and effective manner,and has great development prospects.展开更多
On the basis of practical projects in Chongqing,the thermal performance of heat exchangers (single U-tube type and double U-tube type) of the ground-source heat pump (GSHP) system in the hot summer was obtained and an...On the basis of practical projects in Chongqing,the thermal performance of heat exchangers (single U-tube type and double U-tube type) of the ground-source heat pump (GSHP) system in the hot summer was obtained and analyzed. The data obtained from test could match with the result deduced from theoretical calculation. From the test results,the cooling capacity of double U-tube is 1.6 times that of single U-tube. Taking cost per depth per watt Clq as the evaluation standard,Clq of single U-tube is 4.69 RMB$/W,and Clq of double U-tube is 3.14 RMB$/W. The double U-tube heat exchangers usage should be prioritized.展开更多
Aiming at the ground-coupled source heat pump that possesses the shortcomings of occupying larger land,this article studies the heat exchanged of heat exchanger in piling,and compares it with common heat exchangers bu...Aiming at the ground-coupled source heat pump that possesses the shortcomings of occupying larger land,this article studies the heat exchanged of heat exchanger in piling,and compares it with common heat exchangers buried directly. The result indicates that the heat exchanger makes the best use of structure of building,saves land,reduces the construction cost,and the heat exchanged is obviously more than exchangers buried directly. In winter condition,when W-shape pipe heat exchanger in pile foundation is 50 m deep and diameter is 800 mm,it transfers 1.2-1.3 times as large as the one of single U-shape buried directly at the flow rate of 0.6 m/s,whose borehole diameter is 300 mm. And in summer condition it does about 2.0-2.3 times as that of U-shape one.展开更多
With an aim of rationing use of energy, energy safety, and to reduce carbon emission, our interest was geared towards the refrigerators and all the refrigerating machines. Indeed the heat yielded by the exchanger cond...With an aim of rationing use of energy, energy safety, and to reduce carbon emission, our interest was geared towards the refrigerators and all the refrigerating machines. Indeed the heat yielded by the exchanger condenser can be developed for the water heating, floors heating etc. After an encouraging theoretical study, two prototypes were produced in order to validate the theoretical results. A first refrigerator was coupled with a water-heater and another with a heating floor. The water temperature reached, in one day, is of 60℃;which makes it possible to predict better results with a continuously used refrigerator. In the same way for the heating floor coupled with the second refrigerator, the temperature reached high values because the surface is reduced;however for the heating floors the standard fixes the temperature between 28℃ and 30℃.展开更多
This paper describes possibilities to utilize sea water for district heating and cooling purposes in Tallinn costal area. The sea water temperature profiles and suitability of heating and cooling generation are studie...This paper describes possibilities to utilize sea water for district heating and cooling purposes in Tallinn costal area. The sea water temperature profiles and suitability of heating and cooling generation are studied for continental climatic conditions. The district network study bases on 21 buildings located near to the Gulf of Finland. Industrial reversible heat pump technology is selected to cover heating and cooling loads for the new buildings. Combination of existing district heating and heat pump technology is considered for existing buildings. The results show possibilities, threats and need for further research of the sea water based heat pump district network implementation.展开更多
文摘The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, the major obstacle hindering the utilization of this technology is the high initial cost, especially for the installation of ground coupled heat exchanger. The horizontal closed-loop system offers lower installation cost, as it requires no vertical borehole construction. Instead, the heat exchangers can be installed in shallow trenches that may be excavated, by small excavator or even by human labor. This paper presents the comparison of two different heat exchangers, namely, the capillary mat and the widely used slinky pipe. Both heat exchangers are connected to a heat pump, where continuous heating tests were carried out for 165 hours (~7 days) for each configuration. The purpose of this research is to show the performance of capillary mat in comparison to slinky pipe. Despite during the entire test for capillary mat required 6% higher electricity consumption, compared to slinky heat exchanger, the results still suggest the potential use of capillary mat as alternative to slinky heat exchanger. Additionally, the results also highlight the high hydraulic resistance of installed capillary mat heat exchangers may become the major disadvantage of the capillary mat.
文摘In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.
文摘To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.
基金Supported by National Natural Science Foundation of China(No.1272263)
文摘This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calculation and experiment.The results show that the average absolute error is less than 0.6 ℃ and the relative error is less than 5% under the pulse load when the analytical solution to the 2-D solid cylindrical source model is used for the SAGSHPS.The coefficient of performance (COP) of the SAGSHPS is 2.95-4.70.The average fluid temperature in the borehole heat exchanger can increase by 3 ℃ with the assistance of solar collector,which will improve the COP of the heat pump by approximately 10% from the experimental data.The energy contributions to the total heating load of soil,electricity and solar are 56.30%,36.87% and 6.83%,respectively.
文摘Due to the high energy consumption for separation of salt containing methanol wastewater, in this work, the multi-effect evaporation coupled with mechanical vapor recompression (MVR) heat pump and thermal integration technologies were raised for the first time. The ELECNRTL thermodynamic model is used to simulate and optimize the evaporation rectification process. Energy consumption and total annual cost (TAC) are taken as objective functions. The results show that multi-effect evaporation coupled with conventional distillation process can save energy consumption and TAC by 44.12% and 39.14%. The multi-effect evaporation coupled with distillation process based on MVR heat pump technology can save energy consumption and TAC by 55.27% and 47.49%, which is super to three-effect evaporation coupled with conventional distillation process. The three-effect evaporation coupled with MVR heat integration process can save energy consumption and TAC by 81.32% and 58.55%, which is more economical than other processes. It can be clearly seen that three-effect evaporation coupled with MVR heat integration process is more competitive to deal with the salt containing methanol wastewater.
文摘In this paper,the single hole heat transfer power of the ground source heat pump system in Hengshui is compared with data gained from thermal response test.The results show that maximum monitoring data of heat transfer power per meter in summer is 97.1% of the test data,and the average value accounts for 81.8%.The per meter heat power data through on-site thermal response test can provide references for designing engineering project and optimizing ground source heat pump system as these data do not vary greatly from the actual monitoring data.
文摘Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.
文摘The consumption of cooling and heating energy and the methods of heating and cooling used in large public buildings are analyzed in this paper. A comparison between initial investment and operation costs of heat pump and traditional heating modes used in large public buildings is also introduced. A life cycle cost (LCC) mathematical model is established to analyze the main factors that affect the LCC including the advantages and disadvantages of heat pumps currently in use. Some suggestions about heating and cooling modes applied in large buildings in different geographical areas are given in this paper.
文摘This paper uses FLUENT software building the three-dimensional unsteady state model of ground source heat pump single U and double U underground pipe to study on heat exchange of underground pipe system in the condition of unsteady state long-term continuous running, analyzes the change of soil temperature filed around underground pipe and performance of underground pipe heat exchange between single U and double U pipe system. The results show that double U pipe system is better than single U system, which can improve unit depth heat exchange efficiency, reduce the number of wells and reduce the initial investment.
文摘A Geothermal Heat Pump (GHP) system is known to have enormous potential for building energy savings and the reduction of associated greenhouse gas emissions, due to its high Coefficient Of Performance (COP). The use of a GHP system in cold-climate regions is more attractive owing to its higher COP for heating compared to conventional heating devices, such as furnaces or boilers. Many factors, however, determine the operational performance of an existing GHP system, such as control strategy, part/full-load efficiency, the age of the system, defective parts, and whether or not regular maintenance services are provided. The omitting of any of these factors in design and operation stages could have significant impacts on the normal operation of GHP systems. Therefore, the objectives of this paper are to further investigate and study the existing GHP systems currently used in buildings located in cold-climate regions of the US, in terms of system operational performance, potential energy and energy cost savings, system cost information, the reasons for installing geothermal systems, current operating difficulties, and owner satisfaction to date. After the comprehensive investigation and in-depth analysis of 24 buildings, the results indicate that for these buildings, about 75% of the building owners are very satisfied with their GHP systems in terms of noise, cost, and indoor comfort. About 71% of the investigated GHP systems have not had serious operating difficulties, and about 85% of the respondents (building owners) would suggest this type of system to other people. Compared to the national median of energy use and energy cost of typical buildings of the same type nationwide, the overall performance of the actual GHP systems used in the cold-climate regions is slightly better, i.e. about 7.2% energy savings and 6.1% energy cost savings on average.
基金Project(GC06A316) supported by the Key Technologies Research and Development Program of Heilongjiang Province, China Project(11531038) supported by the Program of the Educational Commission of Heilongjiang Province of China.
文摘Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period.
基金Supported by the National Natural Science Foundation of China(21476119,21406124)Major Science and Technology Innovation Project of Shandong Province(2018CXGC1102).
文摘The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that there is a great potential for low-temperature heat recovery and utilization.This article provided a detailed review of recent advances in the development of low-temperature thermal upgrades,power generation,refrigeration,and thermal energy storage.The detailed description will be given from the aspects of system structure improvement,work medium improvement,and thermodynamic and economic performance evaluation.It also pointed out the development bottlenecks and future development trends of various technologies.The low-temperature heat combined utilization technology can recover waste heat in an all-round and effective manner,and has great development prospects.
文摘On the basis of practical projects in Chongqing,the thermal performance of heat exchangers (single U-tube type and double U-tube type) of the ground-source heat pump (GSHP) system in the hot summer was obtained and analyzed. The data obtained from test could match with the result deduced from theoretical calculation. From the test results,the cooling capacity of double U-tube is 1.6 times that of single U-tube. Taking cost per depth per watt Clq as the evaluation standard,Clq of single U-tube is 4.69 RMB$/W,and Clq of double U-tube is 3.14 RMB$/W. The double U-tube heat exchangers usage should be prioritized.
基金Project(2006BAJ03A10) supported by the National Key Technology R&D Program of China
文摘Aiming at the ground-coupled source heat pump that possesses the shortcomings of occupying larger land,this article studies the heat exchanged of heat exchanger in piling,and compares it with common heat exchangers buried directly. The result indicates that the heat exchanger makes the best use of structure of building,saves land,reduces the construction cost,and the heat exchanged is obviously more than exchangers buried directly. In winter condition,when W-shape pipe heat exchanger in pile foundation is 50 m deep and diameter is 800 mm,it transfers 1.2-1.3 times as large as the one of single U-shape buried directly at the flow rate of 0.6 m/s,whose borehole diameter is 300 mm. And in summer condition it does about 2.0-2.3 times as that of U-shape one.
文摘With an aim of rationing use of energy, energy safety, and to reduce carbon emission, our interest was geared towards the refrigerators and all the refrigerating machines. Indeed the heat yielded by the exchanger condenser can be developed for the water heating, floors heating etc. After an encouraging theoretical study, two prototypes were produced in order to validate the theoretical results. A first refrigerator was coupled with a water-heater and another with a heating floor. The water temperature reached, in one day, is of 60℃;which makes it possible to predict better results with a continuously used refrigerator. In the same way for the heating floor coupled with the second refrigerator, the temperature reached high values because the surface is reduced;however for the heating floors the standard fixes the temperature between 28℃ and 30℃.
文摘This paper describes possibilities to utilize sea water for district heating and cooling purposes in Tallinn costal area. The sea water temperature profiles and suitability of heating and cooling generation are studied for continental climatic conditions. The district network study bases on 21 buildings located near to the Gulf of Finland. Industrial reversible heat pump technology is selected to cover heating and cooling loads for the new buildings. Combination of existing district heating and heat pump technology is considered for existing buildings. The results show possibilities, threats and need for further research of the sea water based heat pump district network implementation.