This work aims to compute stability derivatives in the Newtonian limit in pitch when the Mach number tends to infinity.In such conditions,these stability derivatives depend on the Ogive’s shape and not the Mach numbe...This work aims to compute stability derivatives in the Newtonian limit in pitch when the Mach number tends to infinity.In such conditions,these stability derivatives depend on the Ogive’s shape and not the Mach number.Generally,the Mach number independence principle becomes effective from M=10 and above.The Ogive nose is obtained through a circular arc on the cone surface.Accordingly,the following arc slopes are consideredλ=5,10,15,−5,−10,and−15.It is found that the stability derivatives decrease due to the growth inλfrom 5 to 15 and vice versa.Forλ=5 and 10,the damping derivative declines with an increase inλfrom 5 to 10.Yet,for the damping derivatives,the minimum location remains at a pivot position,h=0.75 for large values ofλ.Hence,whenλ=−15,the damping derivatives are independent of the cone angles for most pivot positions except in the early twenty percent of the leading edge.展开更多
Arrhenius law implicates that only those molecules which possess the internal energy greater than the activation energy Ea can react. However, the internal energy will not be proportional to the gas temperature if the...Arrhenius law implicates that only those molecules which possess the internal energy greater than the activation energy Ea can react. However, the internal energy will not be proportional to the gas temperature if the specific heat ratio y and the gas constant R vary during chemical reaction processes. The varying y may affect significantly the chemical reaction rate calculated with the Arrhenius law under the constant γ assumption, which has been widely accepted in detonation and combustion simulations for many years. In this paper, the roles of variable γ and R in Arrhenius law applications are reconsidered, and their effects on the chemical reaction rate are demonstrated by simulating one- dimensional C-J and two-dimensional cellular detonations. A new overall one-step detonation model with variable γ and R is proposed to improve the Arrhenius law. Numerical experiments demonstrate that this improved Arrhenius law works well in predicting detonation phenomena with the numerical results being in good agreement with experimental data.展开更多
The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage dev...The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage device filled with magnetic nanoencapsulated phase change materials(NEPCMs).The versatile finite element method(FEM)is implemented to numerically solve the governing equations.The effects of various parameters,including the viscosity parameter,ranging from 1 to 3,the thermal conductivity parameter,ranging from 1 to 3,the Rayleigh parameter,ranging from 102 to 3×10^(2),the radiation number,ranging from 0.1 to 0.5,the fusion temperature,ranging from 1.0 to 1.2,the volume fraction of NEPCMs,ranging from 2%to 6%,the Stefan number,ranging from 1 to 5,the magnetic number,ranging from 0.1 to 0.5,and the irreversibility parameter,ranging from 0.1 to 0.5,are examined in detail on the temperature contours,isentropic lines,heat capacity ratio,and velocity fields.Furthermore,the heat transfer rates at both the cold and hot walls are analyzed,and the findings are presented graphically.The results indicate that the time taken by the NEPCMs to transition from solid to liquid is prolonged inside the chamber region as the fusion temperatureθf increases.Additionally,the contours of the heat capacity ratio Cr decrease with the increase in the Stefan number Ste.展开更多
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m...Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.展开更多
Rayleigh-Taylor(RT)instability widely exists in nature and engineering fields.How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value.At present,abund...Rayleigh-Taylor(RT)instability widely exists in nature and engineering fields.How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value.At present,abundant results of RT instability have been obtained by traditional macroscopic methods.However,research on the thermodynamic non-equilibrium(TNE)effects in the process of system evolution is relatively scarce.In this paper,the discrete Boltzmann method based on non-equilibrium statistical physics is utilized to study the effects of the specific heat ratio on compressible RT instability.The evolution process of the compressible RT system with different specific heat ratios can be analyzed by the temperature gradient and the proportion of the non-equilibrium region.Firstly,as a result of the competition between the macroscopic magnitude gradient and the non-equilibrium region,the average TNE intensity first increases and then reduces,and it increases with the specific heat ratio decreasing;the specific heat ratio has the same effect on the global strength of the viscous stress tensor.Secondly,the moment when the total temperature gradient in y direction deviates from the fixed value can be regarded as a physical criterion for judging the formation of the vortex structure.Thirdly,under the competition between the temperature gradients and the contact area of the two fluids,the average intensity of the non-equilibrium quantity related to the heat flux shows diversity,and the influence of the specific heat ratio is also quite remarkable.展开更多
Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 μW/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and h...Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 μW/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and helium isotope ratio of underground fluid, the heat productions of different tectonic units in China continent are estimated in range of 0.58-1.12 μW/m3 with a median of 0.85 μW/m3. Accordingly, the contents of U, Th and K20 in China crust are in ranges of 0.83-1.76 μg/g, 3.16-6.69 μg/g, and 1.0%-2.12%, respectively. These results indicate that the abundance of radioactive elements in the crust of China continent is much higher than that of Archean crust; and this fact implies China's continental crust is much evolved in chemical composition. Meanwhile, significant lateral variation of crustal composition is also exhibited among different tectonic units in China continent. The crust of eastern China is much enriched in incompatible elements such as U, Th and K than that of western China; and the crust of orogenic belts is more enriched than that of platform regions. It can also be inferred that the crusts of eastern China and orogenic belts are much felsic than those of western China and platform regions, respectively, derived from the positive correlation between the heat production and SiO2 content of bulk crust. This deduction is consistent with the results derived from the crustal seismic velocity data in China. According to the facts of the lower seismic velocity of China than the average value of global crust, and the higher heat production of China continent compared with global crust composition models published by previous studies, it is deduced that the average composition models of global continent crust by Rudnick and Fountain (1995), Rudnick and Gao (2003), Weaver and Tarney (1984), Shaw et al. (1986), and Wedepohl (1995) overestimate the abundance of incompatible elements such as U, Th and K of continental crust.展开更多
Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determ...Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.展开更多
The heat transfer augmentation of plain twisted tape inserts for different twist ratios has been studied in this study. The data are conducted using the plain twisted tape insert with five different twist ratios respe...The heat transfer augmentation of plain twisted tape inserts for different twist ratios has been studied in this study. The data are conducted using the plain twisted tape insert with five different twist ratios respectively. The range of Reynolds number is considered under a uniform heat flux condition. In the case of simulation, the tapes are made from a stainless steel strip with a thickness of 2 mm. A tubular pipe with 850mm U-loop length and twist length of 800 mm each is considered in our study for simulation. Water is used as working fluids inside the tube for our simulation. The simulation results demonstrate that the important heat transfer parameters including Nusselt number (Nu), friction factor (f) and thermal performance index (η) are gradually increased with the increment of the twist ratio and reached at the saturated level while twist ratio is 3.5,?afterward the thermal properties are decreased.展开更多
This experimental study is performed to investigate heat transfer performance of a multi-heat pipe cooling device in the condition of different filling ratios (40%, 60%, 80% and 100%) and different constant heat fluxe...This experimental study is performed to investigate heat transfer performance of a multi-heat pipe cooling device in the condition of different filling ratios (40%, 60%, 80% and 100%) and different constant heat fluxes (10 - 30 W). Here, pure water (distilled water) and graphene oxide (GO)/water nanofluids are employed respectively as working fluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.10%, 0.15%, and 0.20% volume concentrations. Multi-heat pipe is fabricated from copper;the heating and cooling sections are the same size and both are connected by four circular parallel tubes. Temperature fields and thermal resistance are measured for different filling ratio, heat fluxes and volume concentrations. The results indicated that the thermal performance of heat pipe increased with increasing the concentration of GO nanoparticles in the base fluid, while the maximum heat transfer enhancement was observed at 0.20% volume concentration. GO/water nanofluids showed lower thermal resistance compared to pure water;the optimal thermal resistance was obtained at 100% filling charge ratio with 0.20% volume concentration. Studies were also demonstrated that heat transfer coefficient of the heat pipe significantly increases with increasing the input heat flux and GO nanoparticles concentration.展开更多
A high-aspect-ratio microchannel heat exchanger based on multi-tool milling process was developed. Several slotting cutters were stacked together for simultaneously machining several high-aspect-ratio microchannels wi...A high-aspect-ratio microchannel heat exchanger based on multi-tool milling process was developed. Several slotting cutters were stacked together for simultaneously machining several high-aspect-ratio microchannels with manifold structures. On the basis of multi-tool milling process, the structural design of the manifold side height, microchannel length, width, number, and interval were analyzed. The heat transfer performances of high-aspect-ratio microchannel heat exchangers with two different manifolds were investigated by experiments, and the influencing factors were analyzed. The results indicate that the magnitude of heat transfer area per unit volume dominates the heat transfer performances of plate-type micro heat exchanger, while the velocity distribution between microchannels has little effects on the heat transfer performances.展开更多
文摘This work aims to compute stability derivatives in the Newtonian limit in pitch when the Mach number tends to infinity.In such conditions,these stability derivatives depend on the Ogive’s shape and not the Mach number.Generally,the Mach number independence principle becomes effective from M=10 and above.The Ogive nose is obtained through a circular arc on the cone surface.Accordingly,the following arc slopes are consideredλ=5,10,15,−5,−10,and−15.It is found that the stability derivatives decrease due to the growth inλfrom 5 to 15 and vice versa.Forλ=5 and 10,the damping derivative declines with an increase inλfrom 5 to 10.Yet,for the damping derivatives,the minimum location remains at a pivot position,h=0.75 for large values ofλ.Hence,whenλ=−15,the damping derivatives are independent of the cone angles for most pivot positions except in the early twenty percent of the leading edge.
文摘Arrhenius law implicates that only those molecules which possess the internal energy greater than the activation energy Ea can react. However, the internal energy will not be proportional to the gas temperature if the specific heat ratio y and the gas constant R vary during chemical reaction processes. The varying y may affect significantly the chemical reaction rate calculated with the Arrhenius law under the constant γ assumption, which has been widely accepted in detonation and combustion simulations for many years. In this paper, the roles of variable γ and R in Arrhenius law applications are reconsidered, and their effects on the chemical reaction rate are demonstrated by simulating one- dimensional C-J and two-dimensional cellular detonations. A new overall one-step detonation model with variable γ and R is proposed to improve the Arrhenius law. Numerical experiments demonstrate that this improved Arrhenius law works well in predicting detonation phenomena with the numerical results being in good agreement with experimental data.
文摘The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage device filled with magnetic nanoencapsulated phase change materials(NEPCMs).The versatile finite element method(FEM)is implemented to numerically solve the governing equations.The effects of various parameters,including the viscosity parameter,ranging from 1 to 3,the thermal conductivity parameter,ranging from 1 to 3,the Rayleigh parameter,ranging from 102 to 3×10^(2),the radiation number,ranging from 0.1 to 0.5,the fusion temperature,ranging from 1.0 to 1.2,the volume fraction of NEPCMs,ranging from 2%to 6%,the Stefan number,ranging from 1 to 5,the magnetic number,ranging from 0.1 to 0.5,and the irreversibility parameter,ranging from 0.1 to 0.5,are examined in detail on the temperature contours,isentropic lines,heat capacity ratio,and velocity fields.Furthermore,the heat transfer rates at both the cold and hot walls are analyzed,and the findings are presented graphically.The results indicate that the time taken by the NEPCMs to transition from solid to liquid is prolonged inside the chamber region as the fusion temperatureθf increases.Additionally,the contours of the heat capacity ratio Cr decrease with the increase in the Stefan number Ste.
基金Key Research and Development Program of Xinjiang(2022B02001-1)National Natural Science Foundation of China(42105172,41975146).
文摘Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51806116 and 11875001)the Natural Science Foundation of Fujian Province(Grant No.2018J01654).
文摘Rayleigh-Taylor(RT)instability widely exists in nature and engineering fields.How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value.At present,abundant results of RT instability have been obtained by traditional macroscopic methods.However,research on the thermodynamic non-equilibrium(TNE)effects in the process of system evolution is relatively scarce.In this paper,the discrete Boltzmann method based on non-equilibrium statistical physics is utilized to study the effects of the specific heat ratio on compressible RT instability.The evolution process of the compressible RT system with different specific heat ratios can be analyzed by the temperature gradient and the proportion of the non-equilibrium region.Firstly,as a result of the competition between the macroscopic magnitude gradient and the non-equilibrium region,the average TNE intensity first increases and then reduces,and it increases with the specific heat ratio decreasing;the specific heat ratio has the same effect on the global strength of the viscous stress tensor.Secondly,the moment when the total temperature gradient in y direction deviates from the fixed value can be regarded as a physical criterion for judging the formation of the vortex structure.Thirdly,under the competition between the temperature gradients and the contact area of the two fluids,the average intensity of the non-equilibrium quantity related to the heat flux shows diversity,and the influence of the specific heat ratio is also quite remarkable.
基金supported by the National Natural Science Foundation of China (Grants Nos. 40376013, 40572128, and 40104003)
文摘Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 μW/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and helium isotope ratio of underground fluid, the heat productions of different tectonic units in China continent are estimated in range of 0.58-1.12 μW/m3 with a median of 0.85 μW/m3. Accordingly, the contents of U, Th and K20 in China crust are in ranges of 0.83-1.76 μg/g, 3.16-6.69 μg/g, and 1.0%-2.12%, respectively. These results indicate that the abundance of radioactive elements in the crust of China continent is much higher than that of Archean crust; and this fact implies China's continental crust is much evolved in chemical composition. Meanwhile, significant lateral variation of crustal composition is also exhibited among different tectonic units in China continent. The crust of eastern China is much enriched in incompatible elements such as U, Th and K than that of western China; and the crust of orogenic belts is more enriched than that of platform regions. It can also be inferred that the crusts of eastern China and orogenic belts are much felsic than those of western China and platform regions, respectively, derived from the positive correlation between the heat production and SiO2 content of bulk crust. This deduction is consistent with the results derived from the crustal seismic velocity data in China. According to the facts of the lower seismic velocity of China than the average value of global crust, and the higher heat production of China continent compared with global crust composition models published by previous studies, it is deduced that the average composition models of global continent crust by Rudnick and Fountain (1995), Rudnick and Gao (2003), Weaver and Tarney (1984), Shaw et al. (1986), and Wedepohl (1995) overestimate the abundance of incompatible elements such as U, Th and K of continental crust.
文摘Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.
文摘The heat transfer augmentation of plain twisted tape inserts for different twist ratios has been studied in this study. The data are conducted using the plain twisted tape insert with five different twist ratios respectively. The range of Reynolds number is considered under a uniform heat flux condition. In the case of simulation, the tapes are made from a stainless steel strip with a thickness of 2 mm. A tubular pipe with 850mm U-loop length and twist length of 800 mm each is considered in our study for simulation. Water is used as working fluids inside the tube for our simulation. The simulation results demonstrate that the important heat transfer parameters including Nusselt number (Nu), friction factor (f) and thermal performance index (η) are gradually increased with the increment of the twist ratio and reached at the saturated level while twist ratio is 3.5,?afterward the thermal properties are decreased.
文摘This experimental study is performed to investigate heat transfer performance of a multi-heat pipe cooling device in the condition of different filling ratios (40%, 60%, 80% and 100%) and different constant heat fluxes (10 - 30 W). Here, pure water (distilled water) and graphene oxide (GO)/water nanofluids are employed respectively as working fluid. GO/water nanofluids were synthesized by the modified Hummers method with 0.05%, 0.10%, 0.15%, and 0.20% volume concentrations. Multi-heat pipe is fabricated from copper;the heating and cooling sections are the same size and both are connected by four circular parallel tubes. Temperature fields and thermal resistance are measured for different filling ratio, heat fluxes and volume concentrations. The results indicated that the thermal performance of heat pipe increased with increasing the concentration of GO nanoparticles in the base fluid, while the maximum heat transfer enhancement was observed at 0.20% volume concentration. GO/water nanofluids showed lower thermal resistance compared to pure water;the optimal thermal resistance was obtained at 100% filling charge ratio with 0.20% volume concentration. Studies were also demonstrated that heat transfer coefficient of the heat pipe significantly increases with increasing the input heat flux and GO nanoparticles concentration.
基金Projects(50675070 50805052) supported by the National Nature Science Foundation of China+1 种基金Projects(07118064 8451064101000320) supported by the Natural Science Foundation of Guangdong Province
文摘A high-aspect-ratio microchannel heat exchanger based on multi-tool milling process was developed. Several slotting cutters were stacked together for simultaneously machining several high-aspect-ratio microchannels with manifold structures. On the basis of multi-tool milling process, the structural design of the manifold side height, microchannel length, width, number, and interval were analyzed. The heat transfer performances of high-aspect-ratio microchannel heat exchangers with two different manifolds were investigated by experiments, and the influencing factors were analyzed. The results indicate that the magnitude of heat transfer area per unit volume dominates the heat transfer performances of plate-type micro heat exchanger, while the velocity distribution between microchannels has little effects on the heat transfer performances.