期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
Effect of intermetallic compounds on heat resistance of hot roll bonded titanium alloy-stainless steel transition joint 被引量:4
1
作者 赵东升 闫久春 刘玉君 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1966-1970,共5页
The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels ... The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time. 展开更多
关键词 INTERMETALLICS titanium alloy stainless steel transition joint heat resistance heat treatment hot roll bonding
下载PDF
Improvements of heat resistance and adhesive property of condensed poly-nuclear aromatic resin via epoxy resin modification 被引量:5
2
作者 Wu Mingbo Wang Yuwei +4 位作者 Jiang Wei Li Shibin Sun Qiqian Zheng Jingtang Qiu Jieshan 《Petroleum Science》 SCIE CAS CSCD 2014年第4期578-583,共6页
A bisphenol epoxy resin was used as modifier to increase the heat resistance of condensed poly-nuclear aromatic (COPNA) resin. The basic properties of COPNA resin and modified resin were characterized by Fourier tra... A bisphenol epoxy resin was used as modifier to increase the heat resistance of condensed poly-nuclear aromatic (COPNA) resin. The basic properties of COPNA resin and modified resin were characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H-NMR), vapor pressure osmometry (VPO) and elemental analysis (EA). Average structural parameters of resins were calculated by the improved Brown-Ladner method, and heat resistance of resins was tested by thermogravimetric analysis (TGA). The chemical structure, mechanical properties and heat resistivity of the resin/graphite composites prepared with different resins were compared. The results show that the adhesive property and heat resistance of COPNA resin can be remarkably improved by addition of 5 wt.% epoxy resin. The reason is that the reactions between epoxy groups of epoxy resin and hydroxyl groups of COPNA resin improve the heat resistance and adhesive property of COPNA resin. Electric motor brushes with good mechanical properties and low electrical resistivity were successfully prepared by using the modified resin as binder. 展开更多
关键词 COPNA resin MODIFICATION epoxy resin heat resistance mechanical property
下载PDF
Formation Mechanism and Existing Form of Sb in Heat Resistance Mg-Gd-Y-Sb Alloy 被引量:1
3
作者 HUANG Yuanchun LUO Xiaoyu +1 位作者 LIU Yu XIAO Zhengbing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第2期262-268,共7页
The existing form and reaction mechanism of Sb in heat resistane Mg-Gd-Y-Sb rare earth magnesium alloy were investigated by inductive coupled plasma emission spectroscopy(ICP),scanning electron microscopy(SEM),energy ... The existing form and reaction mechanism of Sb in heat resistane Mg-Gd-Y-Sb rare earth magnesium alloy were investigated by inductive coupled plasma emission spectroscopy(ICP),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),and X-ray diffraction(XRD).It is found that Sb tends to form high melting point intermetallics with rare earth elements of Gd and Y.The existing form of Sb is determined to be GdSb and SbY,respectively,which has high melting point(GdSb:2142℃/SbY:1782℃).Meanwhile,the first principle calculation and electronegativity difference calculation were performed to further understand the reaction mechanism.Therefore,the forming heat and binding energy were calculated.The experimental results show that the binding tendency of Sb element to Gd and Y is much stronger than that of it with other elements in this alloy,which results in the formation of high melting point of Gd-Sb and Y-Sb intermetallics,and finally leads to the high temperature resistant further improvement of the Mg-Gd-Y magnesium alloy. 展开更多
关键词 Mg-Gd-Y-Sb alloys rare earth elements heat resistance property INTERMETALLICS first-principles calculation
下载PDF
Heat Resistance of TiN Coated HSS Tools 被引量:1
4
作者 周兰英 周焕雷 贾庆莲 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期176-179,共4页
The cutting friction, cutting deformation, producing heat, conducting heat, temperature field of TiN coated HSS tools in the cutting process are discussed profoundly. In order to make clear the heat property of TiN co... The cutting friction, cutting deformation, producing heat, conducting heat, temperature field of TiN coated HSS tools in the cutting process are discussed profoundly. In order to make clear the heat property of TiN coated tools, from the micromechanism angle, the relationship of the heat property and the crystal structure of TiN compound is analyzed, and the regularity of TiN compound crystal structure changing with temperature rising is sought. The difference of the wear resistance and heat resistance of TiN coated tools deposited by c1 and c2 depositing techniques is proved by tests. The conclusions will offer the theoretical basis for correct design of geometrical parameters of TiN coated tools, rational selection of cutting regimes and optimization of the depositing technique. 展开更多
关键词 TiN coated HSS heat resistance crystal structure depositing technique
下载PDF
A Study on Heat Resistance and Initial Characterization of Protease Inhibitors in Porcine Colostrum
5
作者 ZHOUQi HERui-guo +4 位作者 YUANQian-hua LIXiang LIAOSheng-rong ZHOUWu KONGNi-jia 《Agricultural Sciences in China》 CAS CSCD 2003年第9期1048-1053,共6页
Porcine colostrum was separated into the acid soluble fraction (SF) and casein fraction (CF) by acidifying followed by centrifuge. SF was further separated by liquid chromatography and anisotropic membrane filtration... Porcine colostrum was separated into the acid soluble fraction (SF) and casein fraction (CF) by acidifying followed by centrifuge. SF was further separated by liquid chromatography and anisotropic membrane filtration. Capacities of the SF or CF of porcine colostrum, to inhibit trypsin and chymotrypsin activity and to inhibit the epidermal growth factor (EGF) degradation in pig small intestinal contents, were determined under different heat treatments. The study showed that trypsin inhibitors in porcine colostrum survived heat treatments of 100℃ water bath for up to 10 min, but exposure to boiling water bath for 30 min significantly decreased the inhibitory activity. Compared with the trypsin inhibitors, the chymotrypsin inhibitors were more heat sensitive. SF was more heat sensitive than CF. Separation of the SF of porcine colostrum by liquid chromatography and anisotropic membrane filtration revealed that the porcine colostrum protease inhibitors, those had the capacity to inhibit the trypsin chymotrypsin activity and enhanced the stability of EGF in the gastrointestinal(GI) lumen of weaned pigs, existed mainly in SF, milk derived, were a group of heat labile small proteins with molecular weight of 10 00050 000. 展开更多
关键词 Porcine colostrum Protease inhibitors heat resistance Molecular weight Inhibitory capa city
下载PDF
Heat Resistance of Rice Landrace D43 at Anthesis
6
作者 LI Xiao-xiang YAO Yi +6 位作者 PAN Xiao-wu LI Yong-chao LIU Wen-qiang LIU Li-cheng SHENG Xin-nian KANG Xu-mei DUAN Yong-hong 《Agricultural Science & Technology》 CAS 2018年第1期1-10,共10页
Rice is extremely sensitive to high temperature, especially at the fowering stage. Identifying new germplasm and breeding heat-resistant rice varieties are therefore essential. After multi-year evaluations, a heat-res... Rice is extremely sensitive to high temperature, especially at the fowering stage. Identifying new germplasm and breeding heat-resistant rice varieties are therefore essential. After multi-year evaluations, a heat-resistant rice landrace D43 was identifed in our previous research. In this study, the relationship between heat resistance and flower opening time (FOT) was analyzed both in the field and in phytotron. The results showed that high temperature could accelerate fower opening of a range of rice varieties. The D43 showed early morning fowering (EMF) habit in different conditions, and the FOT of which was mainly concentrated in the period of 8:30~10:00 AM under high temperature. The spikelet fertility of D43 was relatively low after exposure to invariably high temperature during fower opening. However, the EMF habit of D43 was conducive to avoiding mid-day high temperature, and therefore increased the spikelet fertility under rising high temperature conditions in the feld and in phytotron. In addition, morphological traits including the anther dehiscence rate, the total number and germinated number of pollens on the stigma were signifcantly correlated with the spikelet fertility, and therefore they could be used to evaluate rice heat resistance at anthesis. 展开更多
关键词 RICE heat resistance Flower opening time
下载PDF
Weatherability and heat resistance enhanced by interaction between AG25 and Mg/AI-LDH
7
作者 Pei-Yao Yang Xiang-Cui Liu +10 位作者 Yu-Chao Wang Huan-Ran Zheng Jin-Xian Wang Jia-Yi Zheng Meng-Jie Liu Dan-Ni Deng Yu Bai Ying-Bi Chen Tong Zhang Zhi-Ming Liu Yong-Peng Lei 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2758-2768,共11页
Although inorganic pigments in common spectral tuning materials show good weatherability and heat resistance,the limited color choices,weak coloring power,poor dispersibility,and a possibility of toxicity limit their ... Although inorganic pigments in common spectral tuning materials show good weatherability and heat resistance,the limited color choices,weak coloring power,poor dispersibility,and a possibility of toxicity limit their development.On the basis of organic pigments which possess a wide range of colors,high coloring power,good transparency,and high safety,herein,the modified pigment and biomimetic coating with improved weatherability,especially ultraviolet(UV)resistance(from 2 to 6 days),was achieved by intercalating acid green 25(AG25)pigment into Mg/Al-layered double hydroxides(Mg/Al-LDH).Furthermore,the heat resistance of AG25 was also significantly increased.Moreover,the spectral stability of pigments after heat treatment is superior with almost unchanged spectral profile and green reflection peak.The formation of strong N-H bonds and the S-M(Mg,Al)bonds between Mg/Al-LDH laminates and AG25 molecules contributes to the improvement.This work shows potential for biomimetic leaf materials in respect of reflective spectra stability. 展开更多
关键词 Layered double hydroxide BIOMIMETIC Acid green 25 INTERACTION WEATHERABILITY heat resistance
原文传递
Characterization and numerical simulation of nucleation-growth-coarsening kinetics of precipitates in G115 martensitic heat resistance steel during long-term aging
8
作者 Yun-he Yu Zheng-dong Liu +4 位作者 Zhen Liu Zheng-zong Chen Han-sheng Bao Chi Zhang Zhi-gang Yang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第6期1279-1290,共12页
The service performance of heat resistance steels is largely determined by the precipitation kinetics.The nucleation-growth-coarsening behaviors of precipitates in G115 martensitic heat resistance steel during long-te... The service performance of heat resistance steels is largely determined by the precipitation kinetics.The nucleation-growth-coarsening behaviors of precipitates in G115 martensitic heat resistance steel during long-term aging at 650℃ have been systemically investigated.The microstructural characteristics,precipitate morphology and alloying element distribution were studied by scanning electron microscopy,transmission electron microscopy and scanning transmission electron microscopy.The lognormal distribution fitting combined with the multiple regression analysis was adopted to evaluate the precipitate size distributions.Laves phase has longer incubation time,and its coarsening rate is almost one order of magnitude higher in comparison with that of M_(23)C_(6) carbide.Furthermore,the nucleation rate,number density,average radius,and volume fraction of two precipitates are simulated based on the classical nucleation theory and the modified Langer-Schwartz model.The precipitation behavior of Laves phase can be well explained with the Fe-W system as the interfacial energy takes 0.10 J/m^(2).In contrast,the simulation results of M_(23)C_(6) carbide in the Fe-Cr-C system are significantly overestimated,which results from the inhibitory effect of boron on coarsening. 展开更多
关键词 NUCLEATION Growth COARSENING Precipitation kinetics G115 heat resistance steel Long-term aging
原文传递
Current progress of research on heat -resistant Mg alloys: A review
9
作者 Hong Yang Wenlong Xie +4 位作者 Jiangfeng Song Zhihua Dong Yuyang Gao Bin Jiang Fusheng Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1406-1425,共20页
With the increasing attention received by lightweight metals,numerous essential fields have increased requirements for mag-nesium(Mg)alloys with good room-temperature and high-temperature mechanical properties.However... With the increasing attention received by lightweight metals,numerous essential fields have increased requirements for mag-nesium(Mg)alloys with good room-temperature and high-temperature mechanical properties.However,the high-temperature mechanic-al properties of commonly used commercial Mg alloys,such as AZ91D,deteriorate considerably with increasing temperatures.Over the past several decades,extensive efforts have been devoted to developing heat-resistant Mg alloys.These approaches either inhibit the gen-eration of thermally unstable phases or promote the formation of thermally stable precipitates/phases in matrices through solid solution or precipitation strengthening.In this review,numerous studies are systematically introduced and discussed.Different alloy systems,includ-ing those based on Mg–Al,Mg–Zn,and Mg–rare earth,are carefully classified and compared to reveal their mechanical properties and strengthening mechanisms.The emphasis,limitations,and future prospects of these heat-resistant Mg alloys are also pointed out and dis-cussed to develop heat-resistant Mg alloys and broaden their potential application areas in the future. 展开更多
关键词 magnesium alloys mechanical properties heat resistance MICROSTRUCTURES high temperatures strengthening mechanisms
下载PDF
Effect of Mn addition on microstructure and mechanical properties of GX40CrNiSi25-12 austenitic heat resistant steel
10
作者 Guan-yu Jiang Meng-wu Wu +2 位作者 Xiao-guang Yang Hui Wang Yu-yuan Zhu 《China Foundry》 SCIE EI CAS CSCD 2024年第3期205-212,共8页
Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and... Three types of steels were designed on the basis of GX40CrNiSi25-12 austenitic heat resistant steel by adding different Mn contents(2wt.%,6wt.%,and 12wt.%).Thermodynamic calculation,microstructure characterization and mechanical property tests were conducted to investigate the effect of Mn addition on the microstructure and mechanical properties of the austenitic heat resistant steel.Results show that the matrix structure in all the three types of steels at room temperature is completely austenite.Carbides NbC and M_(23)C_(6)precipitate at grain boundaries of austenite matrix.With the increase of Mn content,the number of carbides increases and their distribution becomes more uniform.With the Mn content increases from 1.99%to 12.06%,the ultimate tensile strength,yield strength and elongation increase by 14.6%,8.0%and 46.3%,respectively.The improvement of the mechanical properties of austenitic steels can be explained by utilizing classic theories of alloy strengthening,including solid solution strengthening,precipitation strengthening,and grain refinement.The increase in alloy strength can be attributed to solid solution strengthening and precipitation strengthening caused by the addition of Mn.The improvement of the plasticity of austenitic steels can be explained from two aspects:grain refinement and homogenization of precipitated phases. 展开更多
关键词 austenitic heat resistant steel MANGANESE MICROSTRUCTURE mechanical properties
下载PDF
Stereocompfexed Poiy(iactide) Composites toward Engineering Plastics with Superior Toughness, Heat Resistance and Anti-hydrolysis 被引量:5
11
作者 Bao-Gou Wu WeiJun Yang +5 位作者 De-Yu Niu WeiFu Pong Ming-Qing Chen Tian-Xi Liu Ming-Liang Du Pi-Ming Ma 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第10期1107-1116,I0006,共11页
Polyl(lactide),PLA,suffers from bitleness and low heat deflection temperature(HDT),which limits its application as an engineering plastic.In this work,poly(L-lactide)/poly(D-lactide)/ethylene-vinyl acetate glycidyl me... Polyl(lactide),PLA,suffers from bitleness and low heat deflection temperature(HDT),which limits its application as an engineering plastic.In this work,poly(L-lactide)/poly(D-lactide)/ethylene-vinyl acetate glycidyl methacrylate random copolymer(PLLA/PDL A/EVM-GMA=1/1/x)composites were prepared by melt blending,and the in situ formed EVM-g PLA copolymers improved the compatibility between PLA and EVM-GMA.Subsequently,the blends were subjected to a two-step annealing process during compression molding,i.e.first annealing at 120℃ to rapidly form a certain amount of stereocomplex(sc)crystallites as nucleation sites,and then annealing at 200℃ to guide the formation of new sccrystallites.Both differential scanning calorimetry(DSC)and wide angle X-ray dffrction(WAXD)measurements confirmed the formation of highly stereocomplexed PLA products.Mechanical results showed that the PLLA/PDLA blend with 20 wt%of EVM-GMA had a notched impact strength up to 65 kJ/m2 and an elongation at break of 48%,while maintaining a tensile strength of 40 MPa.Meanwhile,dynamic mechanical analysis(DMA)and heat deflection tests showed that the PLA composite had an HDT up to 142℃ which is 90℃ higher than that of normal PLA products.Scanning electron microscopy(SEM)confirmed the fine dispersion of EVM-GMA particles,which facilitated to understand the toughening mechanism.Furthermore,the highly stereocomplexed PLA composites simultaneously exhibited excellent chemical and hydrolysis resistance.Therefore,these fascinating properties may extend the application range of sc PLA material as an engineering bioplastic. 展开更多
关键词 PLA composites STEREOCOMPLEXATION Annealing heat resistance TOUGHNESS
原文传递
Research progress in the heat resistance, toughening and filling modification of PLA 被引量:21
12
作者 Yong Yang Lisheng Zhang +3 位作者 Zhu Xiong Zhaobin Tang Ruoyu Zhang Jin Zhu 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第11期1355-1368,共14页
Due to its high strength, high modulus, excellent clarity, good biodegradability and biocompatibility, poly(lactic acid)(PLA), a bio-based thermoplastic polyester, has evolved into a competitive commodity material wit... Due to its high strength, high modulus, excellent clarity, good biodegradability and biocompatibility, poly(lactic acid)(PLA), a bio-based thermoplastic polyester, has evolved into a competitive commodity material with potential to replace conventional petrochemical-based polymers. However, the wide applications of PLA have been hampered by its native drawbacks, such as low heat distortion temperature(HDT), inherent brittleness and relatively high cost. In recent years, researchers have devoted to breaking above-mentioned bottleneck and attempted to extend the application of PLA. This review will summarize recent work about the modification of PLA, especially focusing on enhancing HDT, toughening and reducing cost. 展开更多
关键词 poly(lactic acid) heat resistance modification toughening modification filling modification
原文传递
Micro-analysis of high-temperature oxidation-resistance of a new kind of heat-resistant grid plate in grate-kiln 被引量:2
13
作者 Jun-you Liu Feng Li +2 位作者 Jie Liu Yi Zhang Yu-lei Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第6期632-639,共8页
To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more ... To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer. 展开更多
关键词 grate-kiln process grid plate heat resistance high-temperature oxidation-resistance oxide film
下载PDF
Wire arc additive manufacturing of a heat-resistant Al-Cu-Ag-Sc alloy:microstructures and high-temperature mechanical properties
14
作者 董博伦 蔡笑宇 +4 位作者 夏云浩 刘放 赵宏伟 林三宝 戴鸿滨 《China Welding》 CAS 2023年第4期1-10,共10页
With a high energy efficiency,low geometric limitation,and low cracking susceptivity to cracks,wire arc additive manufacturing(WAAM)has become an ideal substitute for casting in the manufacturing of load-bearing high ... With a high energy efficiency,low geometric limitation,and low cracking susceptivity to cracks,wire arc additive manufacturing(WAAM)has become an ideal substitute for casting in the manufacturing of load-bearing high strength aluminum components in aerospace industry.Recently,in scientific researches,the room temperature mechanical performance of additive manufactured high strength aluminum alloys has been continuously broken through,and proves these alloys can achieve comparable or even higher properties than the forged counterpart.Since the aluminum components for aerospace usage experience high-low temperature cycling due to the absence of atmosphere protection,the high temperature performances of additive manufactured high strength aluminum alloys are also important.However,few research focuses on that.A special 2319Ag Sc with 0.4 wt.%Ag and 0.2 wt.%Sc addition designed for high temperature application is deposited successfully via cold metal transfer(CMT)based on WAAM.The microstructures and high temperature tensile properties are investigated.The results show that the as-deposited 2319Ag Sc alloy presents an alternate distribution of columnar grains and equiaxed grains with no significant textures.Main second phases are Al_(2)Cu and Al3Sc,while co-growth of Al_(2)Cu and bulk Al_(3)Sc is found on the grain boundary.During manufacturing,nanoscale Al_(2)Cu can precipitate out from the matrix.Ag and Mg form nano-scaleΩphase on the Al_(2)Cu precipitates.At 260℃,average yield strengths in the horizontal direction and vertical direction are 87 MPa±2 MPa,87 MPa±4 MPa,while average ultimate tensile strengths are 140 MPa±7 MPa,141 MPa±11 MPa,and average elongations are 11.0%±2.5%,13.5%±3.0%.Anisotropy in different directions is weak. 展开更多
关键词 Wire arc additive manufacturing Al-Cu-Ag-Sc heat resistance microstructure high temperature property
下载PDF
Effects of composite scale on high temperature oxidation resistance of Fe-Cr-Ni heat resistant alloy 被引量:6
15
作者 Wang Haitao Wang Yuqing +2 位作者 Yu Huashun Min Guanghui Wang Zhifu 《China Foundry》 SCIE CAS 2009年第2期109-114,共6页
Fe-Cr-Ni heat resistant alloys with aluminum and silicon addition, alone and in combination, were melted using an intermediate frequency induction furnace with a non-oxidation method. By the oxidation weight gain meth... Fe-Cr-Ni heat resistant alloys with aluminum and silicon addition, alone and in combination, were melted using an intermediate frequency induction furnace with a non-oxidation method. By the oxidation weight gain method, the oxidation resistances of the test alloys were determined at 1,200 ℃ for 500 hours. According to the oxidation weight gains, the oxidation kinetic curves were plotted and the functions were regressed by the least squares method. The results show that the oxidation kinetic curves follow the power function of y = ax^b (a〉0, 0〈b〈1). The effects of scale compositions on oxidation resistance were studied further by analyses using X-ray diffraction (XRD) and scanning electron microscope (SEM). It is found that the composite scale compounds of Cr203, a-Al2O3, SiO2 and FeCr2O4, with compact structure and tiny grains, shows complete oxidation resistance at 1,200℃. When the composite scale lacks a-Al2O3 or SiO2, it becomes weak in oxidation resistance with a loose structure. By the criterion of standard Gibbs formation free energy, the model of the nucleation and growth of the composite scale is established. The forming of the composite scale is the result of the competition of being oxidized and reduced between aluminum, silicon and the matrix metal elements of iron, chromium and nickel. The protection of the composite scale is analyzed essentially by electrical conductivity and strength properties. 展开更多
关键词 Fe-based alloy heat resistant alloy oxide scale oxidation resistance
下载PDF
IMPROVEMENT OF TYPE IV CRACKING RESISTANCE OF 9Cr HEAT RESISTING STEEL WELDMENT BY BORON ADDITION 被引量:3
16
作者 M.Tabuchi M.Kondo +3 位作者 T.Watanabe H.Hongo F.Yin F.Abe 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期331-337,共7页
Creep lives of high Cr ferritic heat resisting steel weldments decrease due to Type Ⅳ fracture, which occurs as a result of formation and growth of creep voids and cracks on grain boundaries in fine-grained heat affe... Creep lives of high Cr ferritic heat resisting steel weldments decrease due to Type Ⅳ fracture, which occurs as a result of formation and growth of creep voids and cracks on grain boundaries in fine-grained heat affected zone (HAZ). Because boron is considered to suppress the coarsening of grain boundary precipitates and growth of creep voids, we have investigated the effect of boron addition on the creep properties of 9Cr steel weldments. Four kinds of 9Cr3WSCoVNb steels with boron content varying from 4.7×10-5 to 1.8×10-4 and with nitrogen as low as 2.0×10-5 were prepared. The steel plates were welded by gas tungsten arc welding and crept at 923K. It was found that the microstructures of HAZ were quite different from those of conventional high Cr steels such as P91 and P92, namely the fine-grained HAZ did not exist in the present steel weldments. Boron addition also has the effect to suppress coarsening of grain boundary carbides in HAZ during creep. As a result of these phenomena, the welded joints of present steels showed no Type Ⅳ fractures and much better creep lives than those of conventional steels. 展开更多
关键词 high Cr heat resistant steel welded joint boron addition Type IV fracture
下载PDF
Effect of Aluminium and Silicon on High Temperature Oxidation Resistance of Fe-Cr-Ni Heat Resistant Steel 被引量:1
17
作者 王海涛 赵奇 +3 位作者 于化顺 张振亚 崔红卫 闵光辉 《Transactions of Tianjin University》 EI CAS 2009年第6期457-462,共6页
Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test ... Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test alloys was examined at 1 200 ℃ for 500 h. The effects of Al and Si on oxidation resistance were studied through analyses of X-ray diffraction (XRD) and scanning electron microscope (SEM). It is shown that the composition of oxide scales is a decisive factor for the oxidation resistance of heat resistant steels. The compounded scale composed of Cr203, α-Al2O3, SiO2 and Fe (Ni)Cr2O4, with flat and compact structure, fine and even grains, exhibits complete oxidation resistance at 1 200 ℃. Its oxidation weight gain rate is only 0.081 g/(m^2.h). By the criterion of standard Gibbs formation free energy, a model of nucleation and growth of the compounded scale was established. The formation of the compounded scale was the result of the competition of being oxidated and reduction among Al, Si, and the matrix metal elements of Fe, Cr and Ni. The protection of the compounded scale was analyzed from the perspectives of electrical conductivity and strength properties. 展开更多
关键词 heat resistant steel oxide scale oxidation resistance
下载PDF
Temperature distribution and effect of low-density electric current on B2+O lamellar microstructure of Ti_2AlNb alloy sheet during resistance heating 被引量:1
18
作者 WANG Guo-feng LI Xiao +2 位作者 LI Dan-feng GU Yi-bin FANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期550-559,共10页
The resistance heating method has been one of the prospective techniques for hot processing and welding techniques. The thermal behavior under different densities of electric current and the effect of electric current... The resistance heating method has been one of the prospective techniques for hot processing and welding techniques. The thermal behavior under different densities of electric current and the effect of electric current at temperature of 780 oC using low density of electric current of 6.70 A/mm^2 on the B2+O lamellar microstructure were investigated for Ti2AlNb alloy sheet. The stable temperature denoted a balanced state between the Joule heat and the dissipation of heat including heat conduction, convection and radiation while the distribution of temperature was nonuniform. The highest temperatures of electric current heating samples increased as the density of electric current was elevated. In order to understand the specific effect of electric current on B2+O microstructure, heat treatment for microstructural homogeneity was introduced to this study. After that, according to the microstructural observations by common characterization techniques in the resistance-heating sample and the isothermal furnace-heating sample after homogenizing treatment, few significant differences in content and orientation of phases can be directly and explicitly found except the thermal effect from the applied electric current. The results will provide reference to this prospective forming and welding techniques and the application for Ti2AlNb alloys using resistance heating in the near future. 展开更多
关键词 TI2ALNB resistance heating thermal behavior Joule heat
下载PDF
Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging 被引量:4
19
作者 Ying-hui Zhou Chen-xi Liu +2 位作者 Yong-chang Liu Qian-ying Guo Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第3期283-293,共11页
In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitr... In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitrides during long-term aging, experiments were performed at 700, 800, 850, and 900℃ for different periods (1, 24, 70, and 100 h). The precipitation behavior of carbonitrides in specimens subjected to various aging conditions was explored using carbon replicas and transmission electron microscopy (TEM) observations. The corresponding sizes ofMX carbonitrides were measured. The results demonstrates that MX carbonitrides precipitate in type 347H austenitic steel as Nb(C,N). The coarsening rate constant is time-independent; however, an increase in aging temperature results in an increase in coarsening rate of Nb(C,N). The coarsening process was analyzed according to the calculated diffusion activation energy of Nb(C,N). When the aging temperature was 800-900℃, the mean activation energy was 294 kJ·mol -1, and the coarsening behavior was controlled primarily by the diffusion of Nb atoms. 展开更多
关键词 austenitic steel heat resistance CARBONITRIDES COARSENING NANOPARTICLES DIFFUSION thermal aging
下载PDF
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal
20
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel INTERFACE Creep strain MICROSTRUCTURE Failure mechanism Creep life
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部