Magnesium alloy is one of the most widely used lightweight structural materials,and the development of high strength-toughness magnesium alloy is an important research field at present and even in the future.The prepa...Magnesium alloy is one of the most widely used lightweight structural materials,and the development of high strength-toughness magnesium alloy is an important research field at present and even in the future.The preparation process parameters of magnesium alloy directly affect the microstructure of the magnesium alloy,and then determine the properties of the magnesium alloy.The cooling rate has important effects on the microstructure and properties of the magnesium alloy,and is an important preparation process parameter that cannot be ignored.Both the cooling rate from liquid phase to solid phase and the cooling rate of the magnesium alloy after heat treatment will change the microstructure of the magnesium alloy.Furthermore,the properties of magnesium alloy will be affected.In this paper,the effects of cooling rate on the solidification behavior,the rheological behavior,the change of microstructure(the solid solution of alloying elements in matrix,the composition,size,distribution and morphology of second phase,the diffusion and segregation of alloying elements,the grain size,the formation and morphology of dendrite,etc.),and the effects of cooling rate of magnesium alloy after heat treatment on the microstructure and stress distribution are reviewed.The reasons for the divergence about the influence of cooling rate on the microstructure of magnesium alloy are analyzed in detail.The effects of cooling rate on the mechanical properties,corrosion resistance and oxidation resistance of magnesium alloy are also analyzed and discussed deeply.Finally,the new methods and approaches to study the effects of cooling rate on the microstructure and properties of magnesium alloy are prospected.展开更多
Biodegradable Zn-based alloys, particularly Zn-Mg alloys with the addition of alloying elements, have been intensively investigated aiming to improve both mechanical properties and corrosion behavior. Since such prope...Biodegradable Zn-based alloys, particularly Zn-Mg alloys with the addition of alloying elements, have been intensively investigated aiming to improve both mechanical properties and corrosion behavior. Since such properties are strongly dependent on the alloy microstructure, any evaluation should commence on understanding the conditions influencing its formation. In this study, the effect of the solidification cooling rate on the microstructural evolution of Zn-1 wt.%Mg-(0.5 wt.%Ca, 0.5 wt.%Mn) alloys during transient solidification was investigated. The results show that the microstructures of both alloys have three phases in common: η-Zn dendritic matrix, intermetallic compounds(IMCs) Zn11Mg2, and Zn2 Mg in the eutectic mixture. MnZn9 and two Ca-bearing phases(CaZn11 and CaZn13) are associated with Mn and Ca additions, respectively. These additions are shown to refine the dendritic matrix and the eutectic mixture as compared to the Zn-1 wt.%Mg alloy. A correlation between cooling rate, dendritic or eutectic spacings was developed, thus permitting experimental growth laws to be proposed. Additionally, hardness tests were performed to evaluate the effects of additions of Ca and Mn. Experimental correlations between Vickers microhardness and secondary dendritic spacings were proposed, showing that the microstructural refinement and characteristic Ca and Mn based IMCs induce an increase in hardness as compared to the binary alloy.展开更多
The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15 Fe alloy during solidification process were studied.To obtain different cooling rates,the step casting with five dif...The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15 Fe alloy during solidification process were studied.To obtain different cooling rates,the step casting with five different thicknesses was used and the cooling rates and solidification parameters were determined by computer-aided thermal analysis method.The results show that at higher cooling rates,the primary α(Al) dendrite nucleation temperature,eutectic reaction temperature and solidus temperature shift to lower temperatures.Besides,with increasing cooling rate from 0.19 ℃/s up to 6.25 ℃/s,the secondary dendritic arm spacing decreases from 68 μm to 20 μm,and the primary dendritic volume fraction declines by approximately 5%.In addition,it reduces the length of Fe-bearing phase from 28 μm to 18 μm with a better uniform distribution.It is also found that high cooling rates make for modifying eutectic silicon into fibrous branched morphology,and decreasing block or lamella shape eutectic silicon.展开更多
The effects of heat treatments on typical microstructures of directionally solidified(DS) Ti-45Al-8Nb-(W,B,Y)(molar fraction,%) alloys prepared by the Bridgeman method were studied.Two typical DS microstructures...The effects of heat treatments on typical microstructures of directionally solidified(DS) Ti-45Al-8Nb-(W,B,Y)(molar fraction,%) alloys prepared by the Bridgeman method were studied.Two typical DS microstructures including full lamellae with cellular growth morphology and massive structure with dendritic growth morphology were examined.The results show that the heat treatment of 1250 ℃ for 24 h + 900 ℃ for 30 min+air cooling can efficiently eliminate the B2 phase in the DS alloys and change the massive structure of the rapid DS alloy into lamellar microstructure.Columnar lamellar colonies with widths of 150-200 μm and 50-100 μm respectively were observed in intercellular and dendritic arm regions.The heat treatment of 1 400 ℃ for 12 h+900 ℃ for 30 min+air cooling could simultaneously remove the B2 phase,massive structure and solidification segregations from the DS alloys,however,it caused severe growth of grains.展开更多
With the increasing attention received by lightweight metals,numerous essential fields have increased requirements for mag-nesium(Mg)alloys with good room-temperature and high-temperature mechanical properties.However...With the increasing attention received by lightweight metals,numerous essential fields have increased requirements for mag-nesium(Mg)alloys with good room-temperature and high-temperature mechanical properties.However,the high-temperature mechanic-al properties of commonly used commercial Mg alloys,such as AZ91D,deteriorate considerably with increasing temperatures.Over the past several decades,extensive efforts have been devoted to developing heat-resistant Mg alloys.These approaches either inhibit the gen-eration of thermally unstable phases or promote the formation of thermally stable precipitates/phases in matrices through solid solution or precipitation strengthening.In this review,numerous studies are systematically introduced and discussed.Different alloy systems,includ-ing those based on Mg–Al,Mg–Zn,and Mg–rare earth,are carefully classified and compared to reveal their mechanical properties and strengthening mechanisms.The emphasis,limitations,and future prospects of these heat-resistant Mg alloys are also pointed out and dis-cussed to develop heat-resistant Mg alloys and broaden their potential application areas in the future.展开更多
In the present research work on TC21 titanium alloy(6.5 Al-3 Mo-1.9 Nb-2.2 Sn-2.2 Zr-1.5 Cr), the effects of cold deformation, solution treatment with different cooling rates and then aging on microstructure, hardness...In the present research work on TC21 titanium alloy(6.5 Al-3 Mo-1.9 Nb-2.2 Sn-2.2 Zr-1.5 Cr), the effects of cold deformation, solution treatment with different cooling rates and then aging on microstructure, hardness and wear property were investigated. A cold deformation at room temperature with 15% reduction in height was applied on annealed samples. The samples were solution-treated at 920 ℃ for 15 min followed by different cooling rates of water quenching(WQ), air cooling(AC) and furnace cooling(FC) to room temperature. Finally, the samples were aged at 590 ℃ for 4 h. Secondary α-platelets precipitated in residual β-phase in the case of solution-treated samples with AC condition and aged ones. The maximum hardness of HV 470 was obtained for WQ + aging condition due to the presence of high amount of residual β-matrix(69%), while the minimum hardness of HV 328 was reported for FC condition. Aging process after solution treatment can considerably enhance the wear property and this enhancement can reach up to about 122% by applying aging after WQ compared with the annealed samples.展开更多
Magnesium alloys with homogeneous degradation and controlled degradation rate are desirable for biodegradable materials.In the present work,Mg-3 wt.%Zn-0.2 wt.%Ca alloys with different columnar structures were fabrica...Magnesium alloys with homogeneous degradation and controlled degradation rate are desirable for biodegradable materials.In the present work,Mg-3 wt.%Zn-0.2 wt.%Ca alloys with different columnar structures were fabricated and the degradation in 0.9 wt.%NaCl were investigated.With the increase of the growth rate for the directional solidification,the microstructure of the directionally solidified(DSed)alloy evolved from cellular to dendritic coupled with the change of the spacing of the primary trunks(λ_(1))and the volume fraction(fv)of Ca_(2)Mg_(6)Zn_(3) phase.The results of the corrosion test suggested that the alloy with cellular structure experienced homogeneous corrosion and exhibited the lowest corrosion rate.The good corrosion resistance of the alloy with cellular structure was attributed to the protective corrosion products film(CPF),which was closely related to the fv of Ca_(2)Mg_(6)Zn_(3) phase andλ_(1).To evaluate the corrosion rates(CR)of the DSed Mg-Zn-Ca alloys with different microstructures,a parameterαwas proposed in this work,which was calculated byλ_(1) and the fv of Ca_(2)Mg_(6)Zn_(3) phase.The fitting result showed that there was a linear relationship between CR andα,which was CR=4.1899+0.00432α.This means that the CR of the DSed Mg-Zn-Ca alloy can be evaluated if the microstructure had been characterized.展开更多
The microstructure of Cu-Zn alloy with different heat treatment conditions in 3.5%NaCl+NH3 solution were observed, and the average corrosion rates and electrochemical data of Cu-Zn alloy were measured, as well as the ...The microstructure of Cu-Zn alloy with different heat treatment conditions in 3.5%NaCl+NH3 solution were observed, and the average corrosion rates and electrochemical data of Cu-Zn alloy were measured, as well as the effect of heat treatment on microstructure and corrosion resistance of Cu-Zn alloy was analyzed. The results show that the microstructure of Cu-Zn alloy has been changed due to the heat treatment. As a results, the better corrosion resistance can be obtained for the Cu-Zn alloy quenched from 900 ℃ for 0.5 h followed by tempered at 100 ℃ for 2 h.展开更多
Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed ...Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed of amorphous phase. However, with the cooling rate decline, a little α-Mg and MgZn dendrites can be found in the amorphous matrix. Based on the microstructural and tensile results, the ductile dendrites are conceived to be highly responsible for the enhanced compressive strain from 1.3% to 3.1% by increasing the sample diameter from 1.5 mm to 3 mm. In addition, the Mg69Zn27Ca4 alloy with 1.5 mm diameter has the best corrosion properties. The current Mg-based alloys show much better corrosion resistance than the traditionally commercial wrought magnesium alloy ZK60 in simulated sea-water.展开更多
In the present study, the microstructure and mechanical properties of cast Fe-10Cr-1.5B(FCB) alloy after different heat treatments were studied. The results showed that the as-cast microstructure of FCB alloy consis...In the present study, the microstructure and mechanical properties of cast Fe-10Cr-1.5B(FCB) alloy after different heat treatments were studied. The results showed that the as-cast microstructure of FCB alloy consists of α-Fe, M(M=Cr, Fe, Mn)2(B, C) and M(M=Cr, Fe, Mn)7(C, B)3 type borocarbides, and small amounts of pearlite and austenite. After oil quenching treatment, metal matrix transformed into the martensite from the mixture of martensite, pearlite and austenite. There are many M(M=Cr,Fe,Mn)23(C,B)6 type borocarbide precipitates in the metal matrix, and eutectic borocarbide appears with an apparent disconnection and isolated phenomenon. When the quenching temperature reaches 1,050℃, the hardness of FCB alloy is the highest, but the change of quenching temperature has no obvious effect on impact toughness of FCB alloy. After tempering, the eutectic microstructure of FCB alloy appears with a "two links" trend. With the increase of tempering temperature, the hardness of FCB alloy decreases gradually and impact toughness increases gradually. Cast FCB alloy oil-quenched from 1,050℃ and tempered from 200℃ has excellent combined properties; its hardness and impact toughness are 61.5 HRC and 8.8 J·cm^-2 respectively.展开更多
Al-4.0Cu-1.4Mg-0.6Mn (2E12) and Al-4.0Cu-1.4Mg-0.6Mn-0.3Zr aluminum billets were manufactured by soft-contact electromagnetic continuous casting (EMC). Subsequent forging and heat treatment were conducted and the ...Al-4.0Cu-1.4Mg-0.6Mn (2E12) and Al-4.0Cu-1.4Mg-0.6Mn-0.3Zr aluminum billets were manufactured by soft-contact electromagnetic continuous casting (EMC). Subsequent forging and heat treatment were conducted and the effects of Zr on the microstructure and properties of the Al-4.0Cu-1.4Mg-0.6Mn alloy were studied. The results show that the addition of 0.3% Zr can reduce the dendrite and refine grains. During forging and solution treatment, fine and dispersive Al3Zr particles precipitated from the supersaturated α (Al) solid solution in the heating process of the billet can effectively pin dislocations and subgrain boundaries. Because of the addition of Zr, the mechanical properties are improved with the tensile strength, yield strength, elongation, and contraction of the area increasing by 5.4%, 11.3%, 9.7%, and 12.6%, respectively. Moreover, under the condition of R = 0.1, the fatigue crack growth rate (da/dN) of the Al-4.0Cu-1.4Mg-0.6Mn-0.3Zr alloy is lower than that of the Al-4.0Cu-1.4Mg-0.6Mn alloy.展开更多
The influence of corrosion on the surface appearance and microstructure of particulate ZA27/SiCp composites was examined after 30 d immersion in a sodium chloride solution with the access of atmospheric oxygen. The co...The influence of corrosion on the surface appearance and microstructure of particulate ZA27/SiCp composites was examined after 30 d immersion in a sodium chloride solution with the access of atmospheric oxygen. The composites with different contents of SiC micro-particles were synthesized via compo casting. Microstructural studies by means of optical microscopy (OM) and scanning electron microscopy (SEM) showed that corrosion occurred in the composite matrices, preferentially in regions of the η phase, rich in zinc. The corrosion processes did not affect the silicon carbide particles incorporated in the matrix alloy. According to the results of electrochemical polarization measurements, an increase in the content of SiC particles in the composite matrice has led to the lower corrosion resistance in the composites.展开更多
Rapidly solidified blanks of Al 8.5Fe 1.3V 1.7Si aluminum alloy were prepared by using two methods of cold isostatically pressing of atomized powder and spray deposition of melt metal. Influence of processing paramete...Rapidly solidified blanks of Al 8.5Fe 1.3V 1.7Si aluminum alloy were prepared by using two methods of cold isostatically pressing of atomized powder and spray deposition of melt metal. Influence of processing parameters, such as extrusion ratio, aspect ratio of cross section of extruded product, extrusion temperature and heating time on microstructures and mechanical properties of rapidly solidified AlFeVSi aluminum alloys was studied by means of optical microscopy, X ray diffractometry, transmission electron microscopy and measurement of tensile properties. Suitable processing parameters were selected to extrude spray deposited blanks into large size pipes. The results show that the effect of extrusion ratio and aspect ratio on microstructures and mechanical properties of rapidly solidified AlFeVSi aluminum alloys can be evaluated by calculating parameter R s, and the value of R s ought to be at least close to 6 in order to obtain high performance extruded product with good binding state. With the increase of extrusion temperature and heating time, the dispersed Al 12 (Fe,V) 3Si particles congregate and coarsen in α (Al) matrix,and the coarse lumpish θ Al 13 Fe 4 phase appears in the alloy extruded above 500 ℃. Therefore, lowering extrusion temperature and shortening exposure time at high temperature through multistage heating are of benefit to changing microstructures and improving mechanical properties of the extruded product. The large size pipes of spray deposited AlFeVSi aluminum alloy extruded at 490 ℃ in the condition of R s being close to 6 and multistage heating have excellent tensile strength and plasticity at room and higher temperature.展开更多
Mg-8Zn-0.5Zr-0.5Gd alloy was prepared by high pressure solidification. Effect of high pressure on microstructure, micro-hardness and corrosion behavior in Hank's solution of the Mg-8Zn-0.5Zr-0.5Gd alloy were investig...Mg-8Zn-0.5Zr-0.5Gd alloy was prepared by high pressure solidification. Effect of high pressure on microstructure, micro-hardness and corrosion behavior in Hank's solution of the Mg-8Zn-0.5Zr-0.5Gd alloy were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffractometer (XRD). The results showed that, compared with the conventional solidification, high pressure solidification obviously refined the grain size of Mg-8Zn-0.5Zr-0.5Gd alloy. The grain size was refined from 200-300 pm to 100-200 pm and the secondary dendrite arm spacing reduced from 30- 50 pm to 10-30 pro. Moreover, the solubility of Zn in the alloy increased and the amount and size of Mg-Zn-Gd phases significantly decreased. The micro-hardness of the alloy solidified under high pressure was improved significantly from 56.17 HV to 63.14 HV. The polarization resistance (Rp) of the alloy had a substantial increase in simulated body fluid, thus the corrosion rate was significantly reduced from 4.0 to 2.7 mm.year-1.展开更多
Beta-solidifying TiAl alloy has great potential in the field of aero-industry as a cast alloy.In the present work,the influence of cooling rate during mushy zone on solidification behavior of Ti-44Al-4Nb-2Cr-0.1B allo...Beta-solidifying TiAl alloy has great potential in the field of aero-industry as a cast alloy.In the present work,the influence of cooling rate during mushy zone on solidification behavior of Ti-44Al-4Nb-2Cr-0.1B alloy was investigated.A vacuum induction heating device combining with temperature control system was used.The Ti-44Al-4Nb-2Cr-0.1B alloy solidified from superheated was melted to β phase with the cooling rates of 10,50,100,200,400 and 700 K·min^(-1),respectively.Results show that with the increase in cooling rate from 10 to 700 K·min^(-1),the colony size of α_2/γ lamella decreases from 1513 to48 urn and the solidification segregation significantly decreases.Also the content of residual B2 phase within α_2/γlamellar colony decreases with the increase in cooling rate.In addition,the alloy in local interdendritic regions would solidify in a hypo-peritectic way,which can be attributed to the solute redistribution and enrichment of Al element in solidification.展开更多
In order to research the different effects of Ce on as-cast microstructure of AZ91 magnesium alloy under different solidifi- cation rates, the die-cast samples with different diameters and different Ce contents were p...In order to research the different effects of Ce on as-cast microstructure of AZ91 magnesium alloy under different solidifi- cation rates, the die-cast samples with different diameters and different Ce contents were prepared, and some characteristics of as-cast microstructure were analyzed. The results showed that Ce could refine grain size, decrease the fraction of eutectic β-Mg17A112 phase, form A14Ce phase and decrease solid solution of A1 in the α-Mg matrix, but the above behaviors of Ce would be weakened under higher solidification rate. The essential reason for Ce to affect as-cast microstructure was that the Ce and A1 concentrated in the liquid phase in front of solid/liquid interface during solidification because Ce itself is difficult to solid solute in α-Mg matrix and inhibits solid solution of AI in α-Mg matrix. However, the dynamic condition of concentration of Ce, A1 would be changed when solidifica- tion rate varied, resulting in different influence extents of Ce on as-cast microstructure under different solidification rates.展开更多
The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical ...The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical and chemical barriers between the molten reactive Al and the steel substrate were deposited by Cathodic Arc Evaporation onto 10 mm-thick heat-resistant steel plates. The dipping tests were conducted in a 700℃ A356 melt for 1 to 21 h at intervals of 3 h. The damage of the coated steel was eva...展开更多
The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show th...The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show that the microstructure of the as-cast alloy is composed ofα-Mg and Mg_(24)(Gd,Y)_(5) eutectic phase,and in T4-treated alloy,Mg_(24)(Gd,Y)_(5) phase dissolves into theα-Mg matrix,leading to an increase in the(Y,Gd)H_(2) phase.After T6 treatment,nanoscale Mg_(24)(Gd,Y)_(5) phase dispersedly precipitates from theα-Mg matrix,and exhibits a specific orientation relationship with the α-Mg:(332)Mg_((24)(Gd,Y)_(5))//(1011)_(α-Mg),[136]Mg_((24)(Gd,Y)_(5))//[1210]_(α-Mg).The corrosion resistance of the Mg-6Gd-3Y-0.5Zr alloys can be ranked in the following order:T6-treated alloy exhibits the highest corrosion resistance,followed by the T4-treated alloy,and finally,the as-cast alloy.The corrosion products of the alloys are all composed of MgO,Mg(OH)_(2),Gd_(2)O_(3),Y_(2)O_(3),and MgCl_(2).The corrosion behavior of Mg-6Gd-3Y-0.5Zr alloy is closely related to the precipitated phase.By establishing the relationship between corrosion rate,hydrogen evolution rate,and corrosion potential,it is further demonstrated that during the micro galvanic corrosion process,the coarse Mg_(24)(Gd,Y)_(5)phase in the as-cast alloy undergoes extensive dissolution,and(Y,Gd)H_(2) phase promotes the dissolution of theα-Mg matrix in the T4-treated alloy,intensifying the hydrogen evolution reaction.The T6-treated alloy,with dispersive precipitation of nanoscale Mg_(24)(Gd,Y)_(5) phase,exhibits better corrosion resistance performance.展开更多
The solidification microstructure of Mg-Gd-YZr alloy was investigated via an experimental study and cellular automaton(CA)simulation.In this study,stepshaped castings were produced,and the temperature variation inside...The solidification microstructure of Mg-Gd-YZr alloy was investigated via an experimental study and cellular automaton(CA)simulation.In this study,stepshaped castings were produced,and the temperature variation inside the casting was recorded using thermocouples during the solidification process.The effects of the cooling rate and Zr content on the grain size of the Mg-Gd-Y-Zr alloy were studied.The results showed that the grain size decreased with an increase in the cooling rate and Zr content.Based on the experimental data,a quantitative model for calculating the heterogeneous nucleation rate was developed,and the model parameters were determined.The evolution of the solidification microstructure was simulated using the CA method,where the quantitative nucleation model was used and a solute partition ceoefficient was introduced to deal with the solute trapping in front of the solid-liquid(S/L)interface.The simulation results of the grain size were in good agreement with the experimental data.The simulation also showed that the fraction of the eutectics decreased with an increasing cooling rate in the range of 2.6-11.0℃·s^(-1),which was verified indirectly by the experimental data.展开更多
A heat resistant aluminum alloy pipe blank with dimensions of d 700/300 mm×1 200 mm was prepared by the multi layer spray deposition technology. Optical microscopy, X ray diffractometry and transmission electron ...A heat resistant aluminum alloy pipe blank with dimensions of d 700/300 mm×1 200 mm was prepared by the multi layer spray deposition technology. Optical microscopy, X ray diffractometry and transmission electron microscopy were used to analyze its morphologies and microstructures. The results show that the microstructures of the pipe blank are homogeneous and the precipitates are uniformly distributed d 25~70 nm spherical or sphere like Al 12 (Fe,V) 3Si particles, its mechanical properties at room temperature and 350 ℃ after densification by extrusion are σ b=412 MPa, δ =7.6% and σ b=187 MPa, δ =7.6%, respectively. The analyses indicate that the proper match of the motion rates of atomizer and substrate can produce deposited blanks with uniform thickness and relatively high cooling rate.展开更多
基金supports from the Natural Science Foundation of Inner Mongolia Autonomous Region of china(2024MS05009)National Natural Science Foundation of China(51661025)+1 种基金Research Program of science and technology at Universities of Inner Mongolia Autonomous Region(NJZY21315)Scientific research project of Inner Mongolia University of Technology(ZY202001 and BS2020003).
文摘Magnesium alloy is one of the most widely used lightweight structural materials,and the development of high strength-toughness magnesium alloy is an important research field at present and even in the future.The preparation process parameters of magnesium alloy directly affect the microstructure of the magnesium alloy,and then determine the properties of the magnesium alloy.The cooling rate has important effects on the microstructure and properties of the magnesium alloy,and is an important preparation process parameter that cannot be ignored.Both the cooling rate from liquid phase to solid phase and the cooling rate of the magnesium alloy after heat treatment will change the microstructure of the magnesium alloy.Furthermore,the properties of magnesium alloy will be affected.In this paper,the effects of cooling rate on the solidification behavior,the rheological behavior,the change of microstructure(the solid solution of alloying elements in matrix,the composition,size,distribution and morphology of second phase,the diffusion and segregation of alloying elements,the grain size,the formation and morphology of dendrite,etc.),and the effects of cooling rate of magnesium alloy after heat treatment on the microstructure and stress distribution are reviewed.The reasons for the divergence about the influence of cooling rate on the microstructure of magnesium alloy are analyzed in detail.The effects of cooling rate on the mechanical properties,corrosion resistance and oxidation resistance of magnesium alloy are also analyzed and discussed deeply.Finally,the new methods and approaches to study the effects of cooling rate on the microstructure and properties of magnesium alloy are prospected.
基金The authors are grateful to FAPESP-São Paulo Research Foundation,Brazil(2014/50502-5 and 2017/16058-9)Capes-Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,Brazil(Funding code 001)and CNPq-National Council for Scientific and Technological Development(406239/2018-5)for their financial supportThe authors would like to thank the Brazilian Nanotechnology National Laboratory–LNNano for allowing us to use its facilities.
文摘Biodegradable Zn-based alloys, particularly Zn-Mg alloys with the addition of alloying elements, have been intensively investigated aiming to improve both mechanical properties and corrosion behavior. Since such properties are strongly dependent on the alloy microstructure, any evaluation should commence on understanding the conditions influencing its formation. In this study, the effect of the solidification cooling rate on the microstructural evolution of Zn-1 wt.%Mg-(0.5 wt.%Ca, 0.5 wt.%Mn) alloys during transient solidification was investigated. The results show that the microstructures of both alloys have three phases in common: η-Zn dendritic matrix, intermetallic compounds(IMCs) Zn11Mg2, and Zn2 Mg in the eutectic mixture. MnZn9 and two Ca-bearing phases(CaZn11 and CaZn13) are associated with Mn and Ca additions, respectively. These additions are shown to refine the dendritic matrix and the eutectic mixture as compared to the Zn-1 wt.%Mg alloy. A correlation between cooling rate, dendritic or eutectic spacings was developed, thus permitting experimental growth laws to be proposed. Additionally, hardness tests were performed to evaluate the effects of additions of Ca and Mn. Experimental correlations between Vickers microhardness and secondary dendritic spacings were proposed, showing that the microstructural refinement and characteristic Ca and Mn based IMCs induce an increase in hardness as compared to the binary alloy.
基金Projects (2005CB724105,2011CB706801) supported by the National Basic Research Program of ChinaProjects (10477010,51171089) supported by the National Natural Science Foundation of ChinaProjects (2009ZX04006-041-04,2011ZX04014-052) supported by the Important National Science&Technology Specific,China
文摘The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15 Fe alloy during solidification process were studied.To obtain different cooling rates,the step casting with five different thicknesses was used and the cooling rates and solidification parameters were determined by computer-aided thermal analysis method.The results show that at higher cooling rates,the primary α(Al) dendrite nucleation temperature,eutectic reaction temperature and solidus temperature shift to lower temperatures.Besides,with increasing cooling rate from 0.19 ℃/s up to 6.25 ℃/s,the secondary dendritic arm spacing decreases from 68 μm to 20 μm,and the primary dendritic volume fraction declines by approximately 5%.In addition,it reduces the length of Fe-bearing phase from 28 μm to 18 μm with a better uniform distribution.It is also found that high cooling rates make for modifying eutectic silicon into fibrous branched morphology,and decreasing block or lamella shape eutectic silicon.
基金Projects(50771013,50871127)supported by the National Natural Science Foundation of China
文摘The effects of heat treatments on typical microstructures of directionally solidified(DS) Ti-45Al-8Nb-(W,B,Y)(molar fraction,%) alloys prepared by the Bridgeman method were studied.Two typical DS microstructures including full lamellae with cellular growth morphology and massive structure with dendritic growth morphology were examined.The results show that the heat treatment of 1250 ℃ for 24 h + 900 ℃ for 30 min+air cooling can efficiently eliminate the B2 phase in the DS alloys and change the massive structure of the rapid DS alloy into lamellar microstructure.Columnar lamellar colonies with widths of 150-200 μm and 50-100 μm respectively were observed in intercellular and dendritic arm regions.The heat treatment of 1 400 ℃ for 12 h+900 ℃ for 30 min+air cooling could simultaneously remove the B2 phase,massive structure and solidification segregations from the DS alloys,however,it caused severe growth of grains.
基金supported by the National Key Research and Development Program of China(No.2022YFB3709300)the National Natural Science Foundation of China(Nos.52101123,U1764253,51971044,U1910213,52001037,U21A2048,U207601,and 52101126)+1 种基金the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0571)the Qinghai Scientific&Technological Program,China(No.2018-GX-A1).
文摘With the increasing attention received by lightweight metals,numerous essential fields have increased requirements for mag-nesium(Mg)alloys with good room-temperature and high-temperature mechanical properties.However,the high-temperature mechanic-al properties of commonly used commercial Mg alloys,such as AZ91D,deteriorate considerably with increasing temperatures.Over the past several decades,extensive efforts have been devoted to developing heat-resistant Mg alloys.These approaches either inhibit the gen-eration of thermally unstable phases or promote the formation of thermally stable precipitates/phases in matrices through solid solution or precipitation strengthening.In this review,numerous studies are systematically introduced and discussed.Different alloy systems,includ-ing those based on Mg–Al,Mg–Zn,and Mg–rare earth,are carefully classified and compared to reveal their mechanical properties and strengthening mechanisms.The emphasis,limitations,and future prospects of these heat-resistant Mg alloys are also pointed out and dis-cussed to develop heat-resistant Mg alloys and broaden their potential application areas in the future.
文摘In the present research work on TC21 titanium alloy(6.5 Al-3 Mo-1.9 Nb-2.2 Sn-2.2 Zr-1.5 Cr), the effects of cold deformation, solution treatment with different cooling rates and then aging on microstructure, hardness and wear property were investigated. A cold deformation at room temperature with 15% reduction in height was applied on annealed samples. The samples were solution-treated at 920 ℃ for 15 min followed by different cooling rates of water quenching(WQ), air cooling(AC) and furnace cooling(FC) to room temperature. Finally, the samples were aged at 590 ℃ for 4 h. Secondary α-platelets precipitated in residual β-phase in the case of solution-treated samples with AC condition and aged ones. The maximum hardness of HV 470 was obtained for WQ + aging condition due to the presence of high amount of residual β-matrix(69%), while the minimum hardness of HV 328 was reported for FC condition. Aging process after solution treatment can considerably enhance the wear property and this enhancement can reach up to about 122% by applying aging after WQ compared with the annealed samples.
基金This work was supported by the Key Research and Development Plan of Shandong Province(2019JZZY020329)the National Key Research and Development Program of China(grant number.2017YFB0103904)+1 种基金the National Natural Science Foundation of China(No.51701211)DongGuan Innovative Research Team Program(2020607234007).
文摘Magnesium alloys with homogeneous degradation and controlled degradation rate are desirable for biodegradable materials.In the present work,Mg-3 wt.%Zn-0.2 wt.%Ca alloys with different columnar structures were fabricated and the degradation in 0.9 wt.%NaCl were investigated.With the increase of the growth rate for the directional solidification,the microstructure of the directionally solidified(DSed)alloy evolved from cellular to dendritic coupled with the change of the spacing of the primary trunks(λ_(1))and the volume fraction(fv)of Ca_(2)Mg_(6)Zn_(3) phase.The results of the corrosion test suggested that the alloy with cellular structure experienced homogeneous corrosion and exhibited the lowest corrosion rate.The good corrosion resistance of the alloy with cellular structure was attributed to the protective corrosion products film(CPF),which was closely related to the fv of Ca_(2)Mg_(6)Zn_(3) phase andλ_(1).To evaluate the corrosion rates(CR)of the DSed Mg-Zn-Ca alloys with different microstructures,a parameterαwas proposed in this work,which was calculated byλ_(1) and the fv of Ca_(2)Mg_(6)Zn_(3) phase.The fitting result showed that there was a linear relationship between CR andα,which was CR=4.1899+0.00432α.This means that the CR of the DSed Mg-Zn-Ca alloy can be evaluated if the microstructure had been characterized.
文摘The microstructure of Cu-Zn alloy with different heat treatment conditions in 3.5%NaCl+NH3 solution were observed, and the average corrosion rates and electrochemical data of Cu-Zn alloy were measured, as well as the effect of heat treatment on microstructure and corrosion resistance of Cu-Zn alloy was analyzed. The results show that the microstructure of Cu-Zn alloy has been changed due to the heat treatment. As a results, the better corrosion resistance can be obtained for the Cu-Zn alloy quenched from 900 ℃ for 0.5 h followed by tempered at 100 ℃ for 2 h.
基金Project(NCET-11-0554)supported by the Program for New Century Excellent Talents in UniversityProject(2011BAE22B04)supportedby the National Key Technology R&D Program of ChinaProject(51271206)supported by the National Natural Science Foundation of China
文摘Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed of amorphous phase. However, with the cooling rate decline, a little α-Mg and MgZn dendrites can be found in the amorphous matrix. Based on the microstructural and tensile results, the ductile dendrites are conceived to be highly responsible for the enhanced compressive strain from 1.3% to 3.1% by increasing the sample diameter from 1.5 mm to 3 mm. In addition, the Mg69Zn27Ca4 alloy with 1.5 mm diameter has the best corrosion properties. The current Mg-based alloys show much better corrosion resistance than the traditionally commercial wrought magnesium alloy ZK60 in simulated sea-water.
基金financially supported by the State Key Laboratory for Mechanical Behavior of Materials(No.20131302)the National Natural Science Foundation of China(Nos.51274016 and 51171073)
文摘In the present study, the microstructure and mechanical properties of cast Fe-10Cr-1.5B(FCB) alloy after different heat treatments were studied. The results showed that the as-cast microstructure of FCB alloy consists of α-Fe, M(M=Cr, Fe, Mn)2(B, C) and M(M=Cr, Fe, Mn)7(C, B)3 type borocarbides, and small amounts of pearlite and austenite. After oil quenching treatment, metal matrix transformed into the martensite from the mixture of martensite, pearlite and austenite. There are many M(M=Cr,Fe,Mn)23(C,B)6 type borocarbide precipitates in the metal matrix, and eutectic borocarbide appears with an apparent disconnection and isolated phenomenon. When the quenching temperature reaches 1,050℃, the hardness of FCB alloy is the highest, but the change of quenching temperature has no obvious effect on impact toughness of FCB alloy. After tempering, the eutectic microstructure of FCB alloy appears with a "two links" trend. With the increase of tempering temperature, the hardness of FCB alloy decreases gradually and impact toughness increases gradually. Cast FCB alloy oil-quenched from 1,050℃ and tempered from 200℃ has excellent combined properties; its hardness and impact toughness are 61.5 HRC and 8.8 J·cm^-2 respectively.
文摘Al-4.0Cu-1.4Mg-0.6Mn (2E12) and Al-4.0Cu-1.4Mg-0.6Mn-0.3Zr aluminum billets were manufactured by soft-contact electromagnetic continuous casting (EMC). Subsequent forging and heat treatment were conducted and the effects of Zr on the microstructure and properties of the Al-4.0Cu-1.4Mg-0.6Mn alloy were studied. The results show that the addition of 0.3% Zr can reduce the dendrite and refine grains. During forging and solution treatment, fine and dispersive Al3Zr particles precipitated from the supersaturated α (Al) solid solution in the heating process of the billet can effectively pin dislocations and subgrain boundaries. Because of the addition of Zr, the mechanical properties are improved with the tensile strength, yield strength, elongation, and contraction of the area increasing by 5.4%, 11.3%, 9.7%, and 12.6%, respectively. Moreover, under the condition of R = 0.1, the fatigue crack growth rate (da/dN) of the Al-4.0Cu-1.4Mg-0.6Mn-0.3Zr alloy is lower than that of the Al-4.0Cu-1.4Mg-0.6Mn alloy.
基金The Ministry of Education, Science and Technological Development of the Republic of Serbia has supported financially this work through projects TR 35021 and OI 172005
文摘The influence of corrosion on the surface appearance and microstructure of particulate ZA27/SiCp composites was examined after 30 d immersion in a sodium chloride solution with the access of atmospheric oxygen. The composites with different contents of SiC micro-particles were synthesized via compo casting. Microstructural studies by means of optical microscopy (OM) and scanning electron microscopy (SEM) showed that corrosion occurred in the composite matrices, preferentially in regions of the η phase, rich in zinc. The corrosion processes did not affect the silicon carbide particles incorporated in the matrix alloy. According to the results of electrochemical polarization measurements, an increase in the content of SiC particles in the composite matrice has led to the lower corrosion resistance in the composites.
文摘Rapidly solidified blanks of Al 8.5Fe 1.3V 1.7Si aluminum alloy were prepared by using two methods of cold isostatically pressing of atomized powder and spray deposition of melt metal. Influence of processing parameters, such as extrusion ratio, aspect ratio of cross section of extruded product, extrusion temperature and heating time on microstructures and mechanical properties of rapidly solidified AlFeVSi aluminum alloys was studied by means of optical microscopy, X ray diffractometry, transmission electron microscopy and measurement of tensile properties. Suitable processing parameters were selected to extrude spray deposited blanks into large size pipes. The results show that the effect of extrusion ratio and aspect ratio on microstructures and mechanical properties of rapidly solidified AlFeVSi aluminum alloys can be evaluated by calculating parameter R s, and the value of R s ought to be at least close to 6 in order to obtain high performance extruded product with good binding state. With the increase of extrusion temperature and heating time, the dispersed Al 12 (Fe,V) 3Si particles congregate and coarsen in α (Al) matrix,and the coarse lumpish θ Al 13 Fe 4 phase appears in the alloy extruded above 500 ℃. Therefore, lowering extrusion temperature and shortening exposure time at high temperature through multistage heating are of benefit to changing microstructures and improving mechanical properties of the extruded product. The large size pipes of spray deposited AlFeVSi aluminum alloy extruded at 490 ℃ in the condition of R s being close to 6 and multistage heating have excellent tensile strength and plasticity at room and higher temperature.
基金financially supported by National Natural Science Foundations of China(Grant No.51201062)Natural Science Foundation of Heilongjiang Province(Grant No.2015038)
文摘Mg-8Zn-0.5Zr-0.5Gd alloy was prepared by high pressure solidification. Effect of high pressure on microstructure, micro-hardness and corrosion behavior in Hank's solution of the Mg-8Zn-0.5Zr-0.5Gd alloy were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffractometer (XRD). The results showed that, compared with the conventional solidification, high pressure solidification obviously refined the grain size of Mg-8Zn-0.5Zr-0.5Gd alloy. The grain size was refined from 200-300 pm to 100-200 pm and the secondary dendrite arm spacing reduced from 30- 50 pm to 10-30 pro. Moreover, the solubility of Zn in the alloy increased and the amount and size of Mg-Zn-Gd phases significantly decreased. The micro-hardness of the alloy solidified under high pressure was improved significantly from 56.17 HV to 63.14 HV. The polarization resistance (Rp) of the alloy had a substantial increase in simulated body fluid, thus the corrosion rate was significantly reduced from 4.0 to 2.7 mm.year-1.
基金financially supported by the National Natural Science Foundation of China(No.51401168)the Fundamental Research Funds for the Central Universities(No.3102014JCQ01026)
文摘Beta-solidifying TiAl alloy has great potential in the field of aero-industry as a cast alloy.In the present work,the influence of cooling rate during mushy zone on solidification behavior of Ti-44Al-4Nb-2Cr-0.1B alloy was investigated.A vacuum induction heating device combining with temperature control system was used.The Ti-44Al-4Nb-2Cr-0.1B alloy solidified from superheated was melted to β phase with the cooling rates of 10,50,100,200,400 and 700 K·min^(-1),respectively.Results show that with the increase in cooling rate from 10 to 700 K·min^(-1),the colony size of α_2/γ lamella decreases from 1513 to48 urn and the solidification segregation significantly decreases.Also the content of residual B2 phase within α_2/γlamellar colony decreases with the increase in cooling rate.In addition,the alloy in local interdendritic regions would solidify in a hypo-peritectic way,which can be attributed to the solute redistribution and enrichment of Al element in solidification.
基金Projects supported by the Natural Science Foundation of Inner Mongolia(2013ZD10,2015MS0510)
文摘In order to research the different effects of Ce on as-cast microstructure of AZ91 magnesium alloy under different solidifi- cation rates, the die-cast samples with different diameters and different Ce contents were prepared, and some characteristics of as-cast microstructure were analyzed. The results showed that Ce could refine grain size, decrease the fraction of eutectic β-Mg17A112 phase, form A14Ce phase and decrease solid solution of A1 in the α-Mg matrix, but the above behaviors of Ce would be weakened under higher solidification rate. The essential reason for Ce to affect as-cast microstructure was that the Ce and A1 concentrated in the liquid phase in front of solid/liquid interface during solidification because Ce itself is difficult to solid solute in α-Mg matrix and inhibits solid solution of AI in α-Mg matrix. However, the dynamic condition of concentration of Ce, A1 would be changed when solidifica- tion rate varied, resulting in different influence extents of Ce on as-cast microstructure under different solidification rates.
文摘The components of the equipment for processing the Al melts into the molded parts can be markedly corroded by the molten Al. In this study, a 4 μm CrN coating or CrN/TiN multilayer coating for providing the physical and chemical barriers between the molten reactive Al and the steel substrate were deposited by Cathodic Arc Evaporation onto 10 mm-thick heat-resistant steel plates. The dipping tests were conducted in a 700℃ A356 melt for 1 to 21 h at intervals of 3 h. The damage of the coated steel was eva...
基金supported by the Key Project of Equipment Pre-research Field Fund under Grant No.61409230407.
文摘The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show that the microstructure of the as-cast alloy is composed ofα-Mg and Mg_(24)(Gd,Y)_(5) eutectic phase,and in T4-treated alloy,Mg_(24)(Gd,Y)_(5) phase dissolves into theα-Mg matrix,leading to an increase in the(Y,Gd)H_(2) phase.After T6 treatment,nanoscale Mg_(24)(Gd,Y)_(5) phase dispersedly precipitates from theα-Mg matrix,and exhibits a specific orientation relationship with the α-Mg:(332)Mg_((24)(Gd,Y)_(5))//(1011)_(α-Mg),[136]Mg_((24)(Gd,Y)_(5))//[1210]_(α-Mg).The corrosion resistance of the Mg-6Gd-3Y-0.5Zr alloys can be ranked in the following order:T6-treated alloy exhibits the highest corrosion resistance,followed by the T4-treated alloy,and finally,the as-cast alloy.The corrosion products of the alloys are all composed of MgO,Mg(OH)_(2),Gd_(2)O_(3),Y_(2)O_(3),and MgCl_(2).The corrosion behavior of Mg-6Gd-3Y-0.5Zr alloy is closely related to the precipitated phase.By establishing the relationship between corrosion rate,hydrogen evolution rate,and corrosion potential,it is further demonstrated that during the micro galvanic corrosion process,the coarse Mg_(24)(Gd,Y)_(5)phase in the as-cast alloy undergoes extensive dissolution,and(Y,Gd)H_(2) phase promotes the dissolution of theα-Mg matrix in the T4-treated alloy,intensifying the hydrogen evolution reaction.The T6-treated alloy,with dispersive precipitation of nanoscale Mg_(24)(Gd,Y)_(5) phase,exhibits better corrosion resistance performance.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701204)the National Science and Technology Major Project of China(No.2017ZX04006001)the National Natural Science Foundation of China(No.U1737208)。
文摘The solidification microstructure of Mg-Gd-YZr alloy was investigated via an experimental study and cellular automaton(CA)simulation.In this study,stepshaped castings were produced,and the temperature variation inside the casting was recorded using thermocouples during the solidification process.The effects of the cooling rate and Zr content on the grain size of the Mg-Gd-Y-Zr alloy were studied.The results showed that the grain size decreased with an increase in the cooling rate and Zr content.Based on the experimental data,a quantitative model for calculating the heterogeneous nucleation rate was developed,and the model parameters were determined.The evolution of the solidification microstructure was simulated using the CA method,where the quantitative nucleation model was used and a solute partition ceoefficient was introduced to deal with the solute trapping in front of the solid-liquid(S/L)interface.The simulation results of the grain size were in good agreement with the experimental data.The simulation also showed that the fraction of the eutectics decreased with an increasing cooling rate in the range of 2.6-11.0℃·s^(-1),which was verified indirectly by the experimental data.
文摘A heat resistant aluminum alloy pipe blank with dimensions of d 700/300 mm×1 200 mm was prepared by the multi layer spray deposition technology. Optical microscopy, X ray diffractometry and transmission electron microscopy were used to analyze its morphologies and microstructures. The results show that the microstructures of the pipe blank are homogeneous and the precipitates are uniformly distributed d 25~70 nm spherical or sphere like Al 12 (Fe,V) 3Si particles, its mechanical properties at room temperature and 350 ℃ after densification by extrusion are σ b=412 MPa, δ =7.6% and σ b=187 MPa, δ =7.6%, respectively. The analyses indicate that the proper match of the motion rates of atomizer and substrate can produce deposited blanks with uniform thickness and relatively high cooling rate.