[ Objective] This study ~med to investigate the influence of high temperature on the expression of heat shock transcription factor AtHsfAla in different genotypes of Arabidopsis. [ Method ] Arabidopsis plants overexpr...[ Objective] This study ~med to investigate the influence of high temperature on the expression of heat shock transcription factor AtHsfAla in different genotypes of Arabidopsis. [ Method ] Arabidopsis plants overexpressing heat shock transcription factor AtHsfA1 a were used as experimental materials and treated un- der high temperature at 39℃ for 1 rain and 5 min; total RNA of AtI-IsfAla was extracted, and the reverse transcription and amplification were conducted using RT- PCR technology, the amplification products were detected by electrophoresis. [ Result ] The expression levels of AtHsfA1 a in Arabidopsis plants overexpressing heat shock transcription factor AtHsfAla at high temperature and room temperature were higher than wild-type Arabidopsis; the expression levels of AtHsfAla in both wild-type Arab/dops/s and transgenic Arabidopsls plants overexpressing heat shock transcription factor AtHsfAla at high temperature of 39 ~C were higher than that at room temperature of 25 ~C, but the expression levels of AtHsfAla in wild-type Arab/dops/s and transgenic Arab/dops/s plants overexpressing heat shock transcription factor AtHsfAla varied little after high temperature treatment at 39 ~C for 1 rain or 5 rain. [ Conclusion] The expression of AtHsfAla is induced rapidly by high tem- perature, thus regulating the expression of early adversity-resistant genes. This study will lay the foundation demonstrating the mechanism of Arabidopsis heat shock transcription factor AtHsfAla.展开更多
[ Objective ] This study was to express and purify Arabidopsis thaliana heat shock factor HSF1. [ Method ] Using Escherichia coli M15 harboring HSF1 (pQE32/His6-HSF1, pREP4) as experimental materials, HSF1 was induc...[ Objective ] This study was to express and purify Arabidopsis thaliana heat shock factor HSF1. [ Method ] Using Escherichia coli M15 harboring HSF1 (pQE32/His6-HSF1, pREP4) as experimental materials, HSF1 was induced to express with isopropyl-β-D-galactoside (IPTG) ; then the expression product was purified using Ni-NTA-agarose affinity chromatography and analyzed by SDS-PAGE. [Result] HSF1 of Arabidopsis thaliana was successfully expressed and purified. [ Conclusion] This study provides materials for understanding the blinding site of HSF1 on Arabidopsis thaliana chromosome, further laying a good foundation for revealing the regulatory mechanism and physiological function of HSF1.展开更多
GTs(Glycosyltransferases)are important in plant growth and abiotic stresses.However,its role in maize heat response is far from clear.Here,we describe the constitutively expressed UDP-glycosyltransferase ZmUGT92A1,whi...GTs(Glycosyltransferases)are important in plant growth and abiotic stresses.However,its role in maize heat response is far from clear.Here,we describe the constitutively expressed UDP-glycosyltransferase ZmUGT92A1,which has a highly conserved PSPG box and is localized in chloroplasts,is induced under heat stress.Functional disruption of ZmUGT92A1 leads to heat sensitivity and reactive oxygen species accumulation in maize.Metabolomics analysis revealed that ZmUGT92A1 affected multiple metabolic pathways and altered the metabolic homeostasis of flavonoids under heat stress.In vitro assay showed ZmUGT92A1 exhibits glycosyltransferase activity on flavonoids and hormones.Additionally,we identified a rapidly heat-induced transcription factor,ZmHSF08,which can directly bind and repress the promoter region of ZmUGT92A1.The ZmHSF08 overexpression line exhibits heat sensitivity and reactive oxygen species accumulation.These findings reveal that the ZmHSF08-ZmUGT92A1 module plays a role in heat tolerance in maize and provide candidate strategies for the development of heat-tolerant varieties.展开更多
The regulation of heat shock transcription factor to heat shock protein expression and the newest knowledge about the effect of heat shock protein on aging,immune response and the balance of cell survival and apoptosi...The regulation of heat shock transcription factor to heat shock protein expression and the newest knowledge about the effect of heat shock protein on aging,immune response and the balance of cell survival and apoptosis are summarized in the paper.展开更多
Aim Inducible nitric oxide synthase (iNOS) makes a great contribution to host defense and inflamma-tion. In many settings, lipopolysaccharide (LPS) induces iNOS expression through activation of the inhibitor of K...Aim Inducible nitric oxide synthase (iNOS) makes a great contribution to host defense and inflamma-tion. In many settings, lipopolysaccharide (LPS) induces iNOS expression through activation of the inhibitor of KB- α (IKB-α) -nuclear factor-KB (NF-KB) cascade, whereas interferon-γ (IFN-γ) acts through Janus kinase ( JAK)- signal transducer and activator of transcription 1 ( STAT1 ) signals. Heat shock factor 1 ( HSF1 ), a major regulator of heat shock protein transcription, has been shown to regulate the production of pro-inflammatory cytokines such as tumor necrosis factor-α(TNF-α) and interleukin-6 (IL-6). But it remains obscure whether and how HSF1 affects iNOS induction. Methods Western blot was used to measure the protein expression. The mRNA level was meas- ured by real time-PCR. Silence of HSF1 was achieved by small interfering RNA. Nitric oxide (NO) content and NF-KB binding activity were assayed by commercial kits. Chromatin immunoprecipitation (CHIP) was used to measure the binding activity of NF-KB and STAT1 to iNOS promoters. Results HSF1 inhibition or knockdown pre- vented the LPS- and/or IFN-γ-stimulated iNOS protein expression in cultured microglia. HSF1 inhibition blocked iNOS mRNA transcription. These inhibitory effects of HSF1 inhibition on iNOS expression were confirmed in brain tissues from endotoxemic mice. Further analysis showed that HSF1 inhibition had no effect on IKB-α degradation and NF-KB or STAT1 phosphorylation in LPS/IFN-γ-stimulated cells. The nuclear transport of active NF-KB or STAT1 was also not affected by HSF1 inhibition. But HSF1 inhibition reduced the binding of NF-KB and STAT1 to their DNA elements. In addition, HSF1 inhibition reduced NF-KB and STAT1 bindings to iNOS promoter inside the LPS/IFN-γ-stimulated cells. Conclusions This preventing effect of HSF1 inhibition on iNOS mRNA transcription presents the necessary role of HSF1 in iNOS induction.展开更多
Objective-To investigate the effects of heat shock transcription factor 1) gene on the constitutivety expressed αB-CrystaUin (aBC) in mice myocardium. Methods-The expression levels of constitutive aBC in HSF1 knockou...Objective-To investigate the effects of heat shock transcription factor 1) gene on the constitutivety expressed αB-CrystaUin (aBC) in mice myocardium. Methods-The expression levels of constitutive aBC in HSF1 knockout (hsf1 - /- ) and HSFl wild type (As/1 + /+) mice myocardium were evaluated by western blot and immunohistochemistry. Results : The αBC levels in hsfl -/- and hsfl +/+ were 68. 42±4. 16, 100. 00±7. 58, respectively (P<0. 05, cytoso-lic fraction) , and 20. 53±1. 01, 37. 55±1. 91, respectively (P<0. 05, pellet fraction). The aBC signals decreased significantly in hsfl -/- myocardium when compared with those in hsfl +/+ myocardium stained with fluorescence immunohistochemistry. Conclusion-HSF1 is an important, but not the only factor, which mediates the constitutively expressed aBC.展开更多
In vitro gynogenesis is an important tool used in haploid or homozygous double-haploid plant breeding.However,because of low repeatability,embryoid induction rate and quality,the molecular mechanisms remain poorly und...In vitro gynogenesis is an important tool used in haploid or homozygous double-haploid plant breeding.However,because of low repeatability,embryoid induction rate and quality,the molecular mechanisms remain poorly understood.Heat shock treatment can promote the transformation of the gametophytic pathway into the sporophyte pathway,which induces the occurrence of haploid.In this study,unfertilized ovaries were heat shocked for 0 h(A0)before flowering and for 0 h(A1),4 h(A3),8 h(A5),12 h(A7),and 24 h(A8),respectively,at 37℃at the first day of the flowering stage.The ovule enlargement rate was increased from 0%at 25℃to 96.8%at 37℃(24 h treatment).Thus,we aimed to investigate the gene expression patterns in unfertilized ovules of watermelon after different periods of heat shock by using RNA-Seq technology.The results showed that compared with A3,A5,A7,and A8,the biosynthesis of amino acid,glycine,serine and threonine metabolic pathways in A1 has changed significantly.This indicated that heat shock treatment affected the synthesis and transformation of amino acids during ovule expansion.The transcriptome data suggested gene expressions of ovule growth were significantly changed by heat-specific influences.The results provide new information on the complex relationship between in vitro gynogenesis and temperature.This provides a basis for further study of the mechanism of heat shock affecting the expansion of watermelon ovule.展开更多
Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) is the most destructive invasive pests in agricultural production and has a high tolerance to heat. Heat shock proteins play an essential role in life activities suc...Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) is the most destructive invasive pests in agricultural production and has a high tolerance to heat. Heat shock proteins play an essential role in life activities such as growth and development, reproduction and diapause of B. tabaci. At the same time, they are also crucial in resisting adverse environments and in adaptive evolution. The expression of heat shock protein in B. tabaci is not only related to temperature, but also to the tolerance of the environment. After receiving external stimuli, the expression level can be increased or decreased to maintain the stability of cells in vivo. This paper reviews the classification, biological characteristics, biological functions, and research status of HSPs in recent years. This mini-review will provide helpful information related to the use of heat shock proteins to study the occurrence and damage of B. tabaci. This has important theoretical and practical significance for revealing Hsps in explaining the population expansion mechanism of B. tabaci invasion and predicting population dynamics.展开更多
Understanding how maize(Zea mays)responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties.Despite extensive utilization of the genome-wide association study(GWAs)approach for ex...Understanding how maize(Zea mays)responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties.Despite extensive utilization of the genome-wide association study(GWAs)approach for exploring favorable natural alleles associated with maize cold tolerance,few studies have successfully identified candidate genes that contribute to maize cold tolerance.In this study,we used a diverse panel of inbred maize lines collected from different germplasm sources to perform a GWAS on var-iations in the relative injured area of maize true leaves during cold stress-a trait very closely correlated with maize cold tolerance.We identified HsF21,which encodes a B-class heat shock transcription factor(HSF)that positively regulates cold tolerance at both the seedling and germination stages.Natural varia-tions in the promoter of the cold-tolerant HSF21Hap1 allele led to increased HSF21 expression under cold stress by inhibiting binding of the basic leucine zipper bziP68 transcription factor,a negative regulator of cold tolerance.By integrating transcriptome deep sequencing,DNA affinity purification sequencing,and targeted lipidomic analysis,we revealed the function of HsF21 in regulating lipid metabolism homeo-stasis to modulate cold tolerance in maize.In addition,we found that HsF21 confers maize cold tolerance without incurring yield penalties.Collectively,this study establishes HsF21 as a key regulator that en-hances cold tolerance in maize,providing valuable genetic resources for breeding of cold-tolerant maize varieties.展开更多
基金Supported by National Natural Science Foundation of China(31060039,31260061)Natural Science Foundation of Yunnan Province(2010ZC163)+1 种基金College-level Project of Kunming University(YJL11025)College-level Project for Key Discipline Construction of Kunming University
文摘[ Objective] This study ~med to investigate the influence of high temperature on the expression of heat shock transcription factor AtHsfAla in different genotypes of Arabidopsis. [ Method ] Arabidopsis plants overexpressing heat shock transcription factor AtHsfA1 a were used as experimental materials and treated un- der high temperature at 39℃ for 1 rain and 5 min; total RNA of AtI-IsfAla was extracted, and the reverse transcription and amplification were conducted using RT- PCR technology, the amplification products were detected by electrophoresis. [ Result ] The expression levels of AtHsfA1 a in Arabidopsis plants overexpressing heat shock transcription factor AtHsfAla at high temperature and room temperature were higher than wild-type Arabidopsis; the expression levels of AtHsfAla in both wild-type Arab/dops/s and transgenic Arabidopsls plants overexpressing heat shock transcription factor AtHsfAla at high temperature of 39 ~C were higher than that at room temperature of 25 ~C, but the expression levels of AtHsfAla in wild-type Arab/dops/s and transgenic Arab/dops/s plants overexpressing heat shock transcription factor AtHsfAla varied little after high temperature treatment at 39 ~C for 1 rain or 5 rain. [ Conclusion] The expression of AtHsfAla is induced rapidly by high tem- perature, thus regulating the expression of early adversity-resistant genes. This study will lay the foundation demonstrating the mechanism of Arabidopsis heat shock transcription factor AtHsfAla.
基金Supported by National Natural Science Foundation of China(30560012)Foundation of General Project of Yunnan Province(2007C261M)Foundation of Yunnan Educational Committee(07C10700)~~
文摘[ Objective ] This study was to express and purify Arabidopsis thaliana heat shock factor HSF1. [ Method ] Using Escherichia coli M15 harboring HSF1 (pQE32/His6-HSF1, pREP4) as experimental materials, HSF1 was induced to express with isopropyl-β-D-galactoside (IPTG) ; then the expression product was purified using Ni-NTA-agarose affinity chromatography and analyzed by SDS-PAGE. [Result] HSF1 of Arabidopsis thaliana was successfully expressed and purified. [ Conclusion] This study provides materials for understanding the blinding site of HSF1 on Arabidopsis thaliana chromosome, further laying a good foundation for revealing the regulatory mechanism and physiological function of HSF1.
基金supported by the National Key Research and Development Program of China (2021YFF1000301)the National Natural Science Foundation of China (31771805)。
文摘GTs(Glycosyltransferases)are important in plant growth and abiotic stresses.However,its role in maize heat response is far from clear.Here,we describe the constitutively expressed UDP-glycosyltransferase ZmUGT92A1,which has a highly conserved PSPG box and is localized in chloroplasts,is induced under heat stress.Functional disruption of ZmUGT92A1 leads to heat sensitivity and reactive oxygen species accumulation in maize.Metabolomics analysis revealed that ZmUGT92A1 affected multiple metabolic pathways and altered the metabolic homeostasis of flavonoids under heat stress.In vitro assay showed ZmUGT92A1 exhibits glycosyltransferase activity on flavonoids and hormones.Additionally,we identified a rapidly heat-induced transcription factor,ZmHSF08,which can directly bind and repress the promoter region of ZmUGT92A1.The ZmHSF08 overexpression line exhibits heat sensitivity and reactive oxygen species accumulation.These findings reveal that the ZmHSF08-ZmUGT92A1 module plays a role in heat tolerance in maize and provide candidate strategies for the development of heat-tolerant varieties.
文摘The regulation of heat shock transcription factor to heat shock protein expression and the newest knowledge about the effect of heat shock protein on aging,immune response and the balance of cell survival and apoptosis are summarized in the paper.
文摘Aim Inducible nitric oxide synthase (iNOS) makes a great contribution to host defense and inflamma-tion. In many settings, lipopolysaccharide (LPS) induces iNOS expression through activation of the inhibitor of KB- α (IKB-α) -nuclear factor-KB (NF-KB) cascade, whereas interferon-γ (IFN-γ) acts through Janus kinase ( JAK)- signal transducer and activator of transcription 1 ( STAT1 ) signals. Heat shock factor 1 ( HSF1 ), a major regulator of heat shock protein transcription, has been shown to regulate the production of pro-inflammatory cytokines such as tumor necrosis factor-α(TNF-α) and interleukin-6 (IL-6). But it remains obscure whether and how HSF1 affects iNOS induction. Methods Western blot was used to measure the protein expression. The mRNA level was meas- ured by real time-PCR. Silence of HSF1 was achieved by small interfering RNA. Nitric oxide (NO) content and NF-KB binding activity were assayed by commercial kits. Chromatin immunoprecipitation (CHIP) was used to measure the binding activity of NF-KB and STAT1 to iNOS promoters. Results HSF1 inhibition or knockdown pre- vented the LPS- and/or IFN-γ-stimulated iNOS protein expression in cultured microglia. HSF1 inhibition blocked iNOS mRNA transcription. These inhibitory effects of HSF1 inhibition on iNOS expression were confirmed in brain tissues from endotoxemic mice. Further analysis showed that HSF1 inhibition had no effect on IKB-α degradation and NF-KB or STAT1 phosphorylation in LPS/IFN-γ-stimulated cells. The nuclear transport of active NF-KB or STAT1 was also not affected by HSF1 inhibition. But HSF1 inhibition reduced the binding of NF-KB and STAT1 to their DNA elements. In addition, HSF1 inhibition reduced NF-KB and STAT1 bindings to iNOS promoter inside the LPS/IFN-γ-stimulated cells. Conclusions This preventing effect of HSF1 inhibition on iNOS mRNA transcription presents the necessary role of HSF1 in iNOS induction.
文摘Objective-To investigate the effects of heat shock transcription factor 1) gene on the constitutivety expressed αB-CrystaUin (aBC) in mice myocardium. Methods-The expression levels of constitutive aBC in HSF1 knockout (hsf1 - /- ) and HSFl wild type (As/1 + /+) mice myocardium were evaluated by western blot and immunohistochemistry. Results : The αBC levels in hsfl -/- and hsfl +/+ were 68. 42±4. 16, 100. 00±7. 58, respectively (P<0. 05, cytoso-lic fraction) , and 20. 53±1. 01, 37. 55±1. 91, respectively (P<0. 05, pellet fraction). The aBC signals decreased significantly in hsfl -/- myocardium when compared with those in hsfl +/+ myocardium stained with fluorescence immunohistochemistry. Conclusion-HSF1 is an important, but not the only factor, which mediates the constitutively expressed aBC.
基金supported by the earmarked fund for China Agriculture Research System (CARS-25)the Fundamental Research Funds of the Chinese Academy of Agricultural Sciences (Y2018YJ15 and Y2019XK16-03)+1 种基金the Agricultural Science and Technology Innovation Program, Chinese Academy of Agricultural Sciences (CAAS-ASTIP2018-ZFRI)the National Key R&D Program of China (2018YFD0201310)
文摘In vitro gynogenesis is an important tool used in haploid or homozygous double-haploid plant breeding.However,because of low repeatability,embryoid induction rate and quality,the molecular mechanisms remain poorly understood.Heat shock treatment can promote the transformation of the gametophytic pathway into the sporophyte pathway,which induces the occurrence of haploid.In this study,unfertilized ovaries were heat shocked for 0 h(A0)before flowering and for 0 h(A1),4 h(A3),8 h(A5),12 h(A7),and 24 h(A8),respectively,at 37℃at the first day of the flowering stage.The ovule enlargement rate was increased from 0%at 25℃to 96.8%at 37℃(24 h treatment).Thus,we aimed to investigate the gene expression patterns in unfertilized ovules of watermelon after different periods of heat shock by using RNA-Seq technology.The results showed that compared with A3,A5,A7,and A8,the biosynthesis of amino acid,glycine,serine and threonine metabolic pathways in A1 has changed significantly.This indicated that heat shock treatment affected the synthesis and transformation of amino acids during ovule expansion.The transcriptome data suggested gene expressions of ovule growth were significantly changed by heat-specific influences.The results provide new information on the complex relationship between in vitro gynogenesis and temperature.This provides a basis for further study of the mechanism of heat shock affecting the expansion of watermelon ovule.
文摘Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) is the most destructive invasive pests in agricultural production and has a high tolerance to heat. Heat shock proteins play an essential role in life activities such as growth and development, reproduction and diapause of B. tabaci. At the same time, they are also crucial in resisting adverse environments and in adaptive evolution. The expression of heat shock protein in B. tabaci is not only related to temperature, but also to the tolerance of the environment. After receiving external stimuli, the expression level can be increased or decreased to maintain the stability of cells in vivo. This paper reviews the classification, biological characteristics, biological functions, and research status of HSPs in recent years. This mini-review will provide helpful information related to the use of heat shock proteins to study the occurrence and damage of B. tabaci. This has important theoretical and practical significance for revealing Hsps in explaining the population expansion mechanism of B. tabaci invasion and predicting population dynamics.
基金supported by Biological Breeding-National Science and Technology Major Project of China(2023ZD0407104)the National Natural Science Foundation of China(32272025 and 31730011)the Pinduoduo-China Agricultural University Research Fund(PC2023B01001),and the Chinese Universities Scientific Fund.
文摘Understanding how maize(Zea mays)responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties.Despite extensive utilization of the genome-wide association study(GWAs)approach for exploring favorable natural alleles associated with maize cold tolerance,few studies have successfully identified candidate genes that contribute to maize cold tolerance.In this study,we used a diverse panel of inbred maize lines collected from different germplasm sources to perform a GWAS on var-iations in the relative injured area of maize true leaves during cold stress-a trait very closely correlated with maize cold tolerance.We identified HsF21,which encodes a B-class heat shock transcription factor(HSF)that positively regulates cold tolerance at both the seedling and germination stages.Natural varia-tions in the promoter of the cold-tolerant HSF21Hap1 allele led to increased HSF21 expression under cold stress by inhibiting binding of the basic leucine zipper bziP68 transcription factor,a negative regulator of cold tolerance.By integrating transcriptome deep sequencing,DNA affinity purification sequencing,and targeted lipidomic analysis,we revealed the function of HsF21 in regulating lipid metabolism homeo-stasis to modulate cold tolerance in maize.In addition,we found that HsF21 confers maize cold tolerance without incurring yield penalties.Collectively,this study establishes HsF21 as a key regulator that en-hances cold tolerance in maize,providing valuable genetic resources for breeding of cold-tolerant maize varieties.