期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Heat dissipation enhancement method for finned heat sink for AGV motor driver's IGBT module
1
作者 刘璇 ZHANG Mingchao +2 位作者 LIU Chengwen ZHOU Chuanan LV Xiaoling 《High Technology Letters》 EI CAS 2024年第2期170-178,共9页
With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated gu... With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated guided vehicle(AGV)motor driver in port environment,and improves heat dissipation by analyzing and optimizing the core component of finned heat sink.Firstly,the temperature distribution of the initial scheme is studied by using Fluent software,and the heat transfer characteristics of the finned heat sink are obtained through numerical analysis.Secondly,an orthogonal test is designed and combined with the response surface methodology to optimize the structural parameters of the finned heat sink,resulting in a 14.57%increase in the heat dissipation effect.Finally,the effectiveness of heat dissipation enhancement is verified.This work provides valuable insights into improving the heat dissipation of IGBT modules and heat sinks,and provides guidance for their future applications. 展开更多
关键词 finned heat sink insulated gate bipolar transistor(IGBT)module heat dissipation orthogonal test response surface methodology
下载PDF
Experimental Verification of Model for Liquid-Cooled Staggered Pin Fin Heat Sinks with Top Bypass Flow 被引量:1
2
作者 Keisuke Horiuchi Atsuo Nishihara 《Journal of Energy and Power Engineering》 2013年第8期1487-1495,共9页
Pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow were experimentally evaluated. The authors considered liquid-cooling applications because there were few data available comparing... Pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow were experimentally evaluated. The authors considered liquid-cooling applications because there were few data available comparing to air-cooling applications. Empirical equations to predict heat transfer on the endwall were developed by obtaining experimental data on the copper base plate with acrylic pins. A new model for predicting pressure drops and heat transfer over staggered pin fin heat sinks with top bypass flow based on mass, momentum, and energy conservation within the two control volumes is proposed. The first control volume in the model is located within the finned area, and the second is located in the gap between the tip of the pins and the flow channel. This model combines two conditions according to the boundary-layer thickness. A comparison between experimental and calculated results revealed that dimensionless pressure drops and the Nusselt number could be predicted within 30% error for the former and 50% error for the latter. 展开更多
关键词 MODELING heat transfer pressure drop pin fin heat sinks endwall effect CORRELATIONS liquid cooling.
下载PDF
Evaluation on Heat Transferring Performance of Fabric Heat Sink by Finite Element Modeling
3
作者 杨旭东 张华帅 +2 位作者 胡吉永 路玉环 李毓陵 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期619-624,共6页
Considering the limitation in current manufacturing technology of commercial pin fin heat sinks,a new fabric heat sink has been designed. However,it is lack of an understanding of the heat transferring performance of ... Considering the limitation in current manufacturing technology of commercial pin fin heat sinks,a new fabric heat sink has been designed. However,it is lack of an understanding of the heat transferring performance of this new kind of heat sink. In this study,the finite element method (FEM) was used to predict the heat transferring performance of fabric heat sink under the condition of natural convection and forced convection, and its heat transferring performance was compared with that of pin fin heat sink. The results showed that in the condition of natural convection the heat transferring performance of pin fin heat sink was better than that of fabric heat sink, and vice versa under the forced convection condition. 展开更多
关键词 fabric heat sink pin fin heat sink natural convection forced convection heat transferring
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部