B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the si...B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.展开更多
In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, t...In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, the fabrication process of miniaturized phase change heat sink is investigated, upon which all parts of the heat sink are fabricated including main-body and end-cover of the heat sink, the formation of three-dimensional boiling structures at the evaporation end, the sintering of the wick, and the encapsulation of high power LED phase change heat sink. Subsequently, with the assistance of the developed testing system, heat transfer performance of the heat sink is tested under the condition of natural convection, upon which the influence of thermal load and working medium on the heat transfer performance is investigated. Finally, the heat transfer performance of the developed miniaturized phase change heat sink is compared with that of metal solid heat sink. Results show that the developed miniaturized phase change heat sink presents much better heat transfer performance over traditional metal solid heat sink, and is suitable for the packaging of high power LED.展开更多
Water-cooled flat-type W/Cu Cr Zr plasma facing components with an interlayer of oxygen-free copper(OFC) have been developed by using vacuum brazing route.The OFC layer for the accommodation of thermal stresses was ...Water-cooled flat-type W/Cu Cr Zr plasma facing components with an interlayer of oxygen-free copper(OFC) have been developed by using vacuum brazing route.The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150oC-1200 oC in a vacuum furnace.The W/OFC cast tiles were vacuum brazed to a Cu Cr Zr heat sink at 940 oC using the silver-free filler material Cu Mn Si Cr.The microstructure,bonding strength,and high heat flux properties of the brazed W/Cu Cr Zr joint samples were investigated.The W/Cu joint exhibits an average tensile strength of 134 MPa,which is about the same strength as pure annealed copper.High heat flux tests were performed in the electron beam facility EMS-60.Experimental results indicated that the brazed W/Cu Cr Zr mock-up experienced screening tests of up to 15 MW/m^2 and cyclic tests of 9 MW/m^2 for 1000 cycles without visible damage.展开更多
Boom clay formation is a potential natural host rock for geological disposal of high-level nuclear waste in Belgium.Heating pulse tests with controlled power supply(maximum temperature was limited to 85℃) and contr...Boom clay formation is a potential natural host rock for geological disposal of high-level nuclear waste in Belgium.Heating pulse tests with controlled power supply(maximum temperature was limited to 85℃) and controlled hydraulic boundary conditions were performed under nearly constant volume conditions to study the impact of thermal loading on the clay formation.Selected test results of intact borehole samples retrieved in horizontal direction are presented and discussed.The study focuses on the time evolution of temperature and pore water pressure changes along heating and cooling paths,i.e.pore pressure build-up during quasi-undrained heating and later dissipation at constant temperature.展开更多
China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is ...China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is the key engineering technology of ITER construction and might be one of the crucial issues of the future reactor too. Since 2004, an associated research team including Southwestern Institute of Physics ( SWIP ), Ninxia Non-ferrous Metal Co. Itd and Chinese Institute of Engineering Physics, as well as Nuclear Power Institute of China has been established. Up to now, several series of interlayer for hot isostatic press ( HIP ) connection of beryllium and CuCrZr alloy have been tested. They are titanium film or coating, Cu coating and Al or AISiMg alloy etc. The bonding strength (tensile or shear strength ) of HIPed Be/Cu joints is up to 100 MPa.展开更多
This work contributed to a detailed study on a better understanding of the Jominy test, adopted a proportion of study to create the Jominy test device, exhibited favorable conceptions for the development of a prototyp...This work contributed to a detailed study on a better understanding of the Jominy test, adopted a proportion of study to create the Jominy test device, exhibited favorable conceptions for the development of a prototype of the device, covering the four aspects of the project, being they: test device, test body heating system, test automation and instrumentation using embedded electronics and financial analysis for the elaboration of this project in Brazil. It was possible to observe in the results that the system is efficient, simple and functional, it was possible to obtain the first test carried out in the controlled environment the temperature data in degrees centigrade, the recorded data were automatically launched in Microsoft Excel by the PLX DAQ software, making the acquisition of the data. In the matter of preparing the test device, the drawings are presented in the 3D modeling software, cost tables of the materials used for assembly in Brazil. In terms of the heating system, a heating system was adopted that uses electromagnetic induction, the cost of materials related to the heating system design was also presented. Another relevant factor that contributes to the research and improvement of the prototype is the municipality, located in the Paraiba Valley region, located in the state of <span style="white-space:nowrap;">São </span>Paulo, consisting of a fertile and relevant scenario of regional, national, international and multinational statistics, thus concluding the effectiveness for the mainly metallurgical industries. The results obtained were satisfactory and consistent, when they were created for the Jominy test device with the ability to submit small pieces for testing and mainly essential in the didactic point of view for a higher education institution of engineering and technology.展开更多
In order to prolong the life span of a turbo-generator plant and sustain its performance at high efficiency, it is subjected periodically to regular test to monitor the operational profile and efficiency of power conv...In order to prolong the life span of a turbo-generator plant and sustain its performance at high efficiency, it is subjected periodically to regular test to monitor the operational profile and efficiency of power conversion from mechanical energy to electrical energy. Analysis of these test data serves as a measure to indicate deviation from normal operation profile and deterioration of plant performance. This present work implemented the heat balance tests process to three turb- generator units in order to assess the harmony, consistency, and accuracy of results to establish parallel correlation for the test process. The test process involves carrying out a heat balance for the turbo-generators at 50%, 75% and 100% load respectively through the determination of the heat losses through the hydrogen coolers, bearing oil, seal oil and radiation and convention to the atmosphere. Some important results were presented in the paper.展开更多
Abstract The process of ion heating by a monochromatic obliquely propagating low-frequency Alfven wave is investigated. This process can be roughly divided into three stages: at first, the ions are picked up by the A...Abstract The process of ion heating by a monochromatic obliquely propagating low-frequency Alfven wave is investigated. This process can be roughly divided into three stages: at first, the ions are picked up by the Alfven wave in several gyro-periods and a bulk velocity in the transverse direction is achieved; then, the ions are scattered in the transverse direction by the wave, which produces phase differences between the ions and leads to ion heating, especially in the perpendicular direction; and finally, the ions are stochastically heated due to the sub- cyclotron resonance. In this paper, with a test particle method, the efficiency and time scale of the ion stochastic heating by a monochromatic obliquely propagating low-frequency Alfven wave are studied. The results show that with the increase of the amplitude, frequency, and propagation angle of the AlDen wave, the efficiency of the ion stochastic heating increases, while the time scale of the ion stochastic heating decreases. With the increase of the plasma beta β, the ions are stochastically heated with less efficiency, and the time scale increases. We also investigate the heating of heavy ion species (He2+ and O5+), which can be heated with a higher efficiency by the oblique Alfven wave.展开更多
Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times...Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times as high as one of iron and steel brake disk, the thermal expansion value of the aluminum brake disk is 2 times as big as one of iron and steel brake disk. Mechanical property of the material decreases with the temperature increasing generally during braking, on the other hand, the big thermal stress in the brake disk happens because the material expansion is constrained. Firstly, the reasons of the thermal stress generation and the fracture failure of brake disks during braking are analyzed qualitatively by virtue of three-bar stress frame and sandwich deformation principles in physic, and then the five constraints which cause the thermal stress are summarized. On the base of the experimental results on the 1:1 emergency brake test, the thermal stress and temperature fields are simulated; The behavior of the fracture failure is interpreted semi-quantitatively by finite element analysis, There is the coincident forecast for the fraction position in term of the two methods. In the end, in the light of the analysis and calculation results, it is the general principles observed by the structure design and assembly of the brake disk that are summarized.展开更多
As an important component of tokamaks,the divertor is mainly responsible for extracting heat and helium ash,and the targets of the divertor need to withstand high heat flux of 10 MW m-2 for steady-state operation.In t...As an important component of tokamaks,the divertor is mainly responsible for extracting heat and helium ash,and the targets of the divertor need to withstand high heat flux of 10 MW m-2 for steady-state operation.In this study,we proposed a new strategy,using microchannel cooling technology to remove high heat load on the targets of the divertor.The results demonstrated that the microchannel-based W/Cu flat-type mock-up successfully withstood the thermal fatigue test of 1000 cycles at 10 MW m^(-2)with cooling water of 26 l min^(-1),30°C(inlet),0.8 MPa(inlet),15 s power on and 15 s dwell time;the maximum temperature on the heat-loaded surface(W surface)of the mock-up was 493°C,which is much lower than the recrystallization temperature of W(1200°C).Moreover,no occurrence of macrocrack and‘hot spot’at the W surface,as well as no detachment of W/Cu tiles were observed during the thermal fatigue testing.These results indicate that microchannel cooling technology is an efflcient method for removing the heat load of the divertor at a low flow rate.The present study offers a promising solution to replace the monoblock design for the EAST divertor.展开更多
With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is pro...With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is promising for the heat dissipation of super-thin electronic equipment.In this study,thermal resistance theoretical model of the micro-channel heat sink was first established.Then,fabrication process of the micro-channel heat sink was introduced.Subsequently,heat transfer performance of the fabricated micro-channel heat sink was tested through the developed testing platform.Results show that the developed micro-channel heat sink has more superior heat dissipation performance over conventional metal solid heat sink and it is well suited for high power LEDs application.Moreover,the micro-channel structures in the heat sink were optimized by orthogonal test.Based on the orthogonal optimization,heat dissipation performance of the micro-channel radiator was further improved.展开更多
In this paper an apparatus for measuring heat transfer properties of clothing materials is re-ported.In comparison with the similar device based on constant temperature method and em-ploying a hot plate,the characteri...In this paper an apparatus for measuring heat transfer properties of clothing materials is re-ported.In comparison with the similar device based on constant temperature method and em-ploying a hot plate,the characteristics of this apparatus are as follows.(1)By using microcomputer as its testing control and data processing center,the testingfunction is strengthened,while much more information can be achieved.(2)By using numerical PID control technique supported with software,the informationabout the transient heat transfer properties of clothing materials can be obtained,while the costlowered.In this paper a brief evaluation of the apparatus is also reported.It shows that its accuracyand repeatability reaches the level of similar commercial device,so to some extent the apparatusis practical.展开更多
In this paper,the single hole heat transfer power of the ground source heat pump system in Hengshui is compared with data gained from thermal response test.The results show that maximum monitoring data of heat transfe...In this paper,the single hole heat transfer power of the ground source heat pump system in Hengshui is compared with data gained from thermal response test.The results show that maximum monitoring data of heat transfer power per meter in summer is 97.1% of the test data,and the average value accounts for 81.8%.The per meter heat power data through on-site thermal response test can provide references for designing engineering project and optimizing ground source heat pump system as these data do not vary greatly from the actual monitoring data.展开更多
A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rownt...A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rowntree (1989; 1990). This convection scheme uses a 'bulk' cloud model to present an ensemble of convective clouds, and aims to represent shallow, deep, and mid-level convection. At present, this convection scheme is employed in the NCC T63L20 model (National Climate Center, China Meteorological Administration). Simulation results with this scheme have revealed some deficiencies in the scheme, although to some extent, it improves the accuracy of the simulation. In order to alleviate the deficiencies and reflect the effect of cumulus convection in the actual atmosphere, the scheme is modified and improved. The improvements include (i) the full estimation of the effects of the large-scale convergence in the lower layer upon cumulus convection, (ii) the revision of the initial convective mass flux, and (iii) the regulation of convective-scale downdrafts. A comparison of the results obtained by using the original model and the modified one shows that the improvement and modification of the original convection scheme is successful in simulating the precipitation and general circulation field, because the modified scheme provides a good simulation of the main features of seasonal precipitation in China, and an analysis of the anomaly correlation coefficient between the simulation and the observations confirms the improved results.展开更多
A coupled water and heat transport mode is established based on the Richards equation to study water flow and heat transport in soil during freezing process. Both the finite difference and finite element method are us...A coupled water and heat transport mode is established based on the Richards equation to study water flow and heat transport in soil during freezing process. Both the finite difference and finite element method are used in the discretization, respectively. Two different computer programs are written and used to simulate an indoor unidirectional frozen test. The freezing depth, freezing rate and temperature variation are compared among lab tests, finite difference calculation simulation and finite element calculation simulation. Result shows that: the finite difference method has a better performance in freezing depth simulation while the finite element method has a better performance in numerical stability in one-dimensional freezing simulation.展开更多
The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thicknes...The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thickness of 20, 40 μm respectively and raw sample named K00. In thermal conductivity measurements, there are little differences among the samples as K00, K20 and K40, they exhibit 153.39, 150.69 and 149.76 W/(m·K), respectively. According to hardness tests, K00, K20 and K40 exhibit 87.9, 259.7 and 344.8 in Vickers values. In the result of salt spray tests to examine the effects on corrosion resistance, K00, K20 and K40 exhibit the grade of 3?5, 2.0?9.8 and 10, respectively. The mutual relation of the above results was analyzed. It is found that the surface treatments do not affect the thermal conductivity of aluminum and result in the improvement of physical properties. As a result of the technology, the surface improvement of aluminum alloy specimen is achieved without thermal degradation. It validates the ability of the aluminum plate heat exchangers with surface treatment to enhance the corrosion resistance. Present work is performed as the first fundamental threshold in the process of aluminum plate heat exchangers development to check out its possibility, therefore the next step-experimental and numerical study of practical aluminum plate heat exchangers will be made.展开更多
文摘B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.
基金Projects(51575115,51775122)supported by the National Natural Science Foundation of China
文摘In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, the fabrication process of miniaturized phase change heat sink is investigated, upon which all parts of the heat sink are fabricated including main-body and end-cover of the heat sink, the formation of three-dimensional boiling structures at the evaporation end, the sintering of the wick, and the encapsulation of high power LED phase change heat sink. Subsequently, with the assistance of the developed testing system, heat transfer performance of the heat sink is tested under the condition of natural convection, upon which the influence of thermal load and working medium on the heat transfer performance is investigated. Finally, the heat transfer performance of the developed miniaturized phase change heat sink is compared with that of metal solid heat sink. Results show that the developed miniaturized phase change heat sink presents much better heat transfer performance over traditional metal solid heat sink, and is suitable for the packaging of high power LED.
基金supported by National Natural Science Foundation of China(No.11205049)the National Magnetic Confinement Fusion Science Program of China(No.2011GB110004)
文摘Water-cooled flat-type W/Cu Cr Zr plasma facing components with an interlayer of oxygen-free copper(OFC) have been developed by using vacuum brazing route.The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150oC-1200 oC in a vacuum furnace.The W/OFC cast tiles were vacuum brazed to a Cu Cr Zr heat sink at 940 oC using the silver-free filler material Cu Mn Si Cr.The microstructure,bonding strength,and high heat flux properties of the brazed W/Cu Cr Zr joint samples were investigated.The W/Cu joint exhibits an average tensile strength of 134 MPa,which is about the same strength as pure annealed copper.High heat flux tests were performed in the electron beam facility EMS-60.Experimental results indicated that the brazed W/Cu Cr Zr mock-up experienced screening tests of up to 15 MW/m^2 and cyclic tests of 9 MW/m^2 for 1000 cycles without visible damage.
基金support provided by EIG EURIDICE/SCK.CEN(Belgium)through a PhD collaboration project with International Centre for Numerical Methods in Engineering(CIMNE,Spain)
文摘Boom clay formation is a potential natural host rock for geological disposal of high-level nuclear waste in Belgium.Heating pulse tests with controlled power supply(maximum temperature was limited to 85℃) and controlled hydraulic boundary conditions were performed under nearly constant volume conditions to study the impact of thermal loading on the clay formation.Selected test results of intact borehole samples retrieved in horizontal direction are presented and discussed.The study focuses on the time evolution of temperature and pore water pressure changes along heating and cooling paths,i.e.pore pressure build-up during quasi-undrained heating and later dissipation at constant temperature.
文摘China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is the key engineering technology of ITER construction and might be one of the crucial issues of the future reactor too. Since 2004, an associated research team including Southwestern Institute of Physics ( SWIP ), Ninxia Non-ferrous Metal Co. Itd and Chinese Institute of Engineering Physics, as well as Nuclear Power Institute of China has been established. Up to now, several series of interlayer for hot isostatic press ( HIP ) connection of beryllium and CuCrZr alloy have been tested. They are titanium film or coating, Cu coating and Al or AISiMg alloy etc. The bonding strength (tensile or shear strength ) of HIPed Be/Cu joints is up to 100 MPa.
文摘This work contributed to a detailed study on a better understanding of the Jominy test, adopted a proportion of study to create the Jominy test device, exhibited favorable conceptions for the development of a prototype of the device, covering the four aspects of the project, being they: test device, test body heating system, test automation and instrumentation using embedded electronics and financial analysis for the elaboration of this project in Brazil. It was possible to observe in the results that the system is efficient, simple and functional, it was possible to obtain the first test carried out in the controlled environment the temperature data in degrees centigrade, the recorded data were automatically launched in Microsoft Excel by the PLX DAQ software, making the acquisition of the data. In the matter of preparing the test device, the drawings are presented in the 3D modeling software, cost tables of the materials used for assembly in Brazil. In terms of the heating system, a heating system was adopted that uses electromagnetic induction, the cost of materials related to the heating system design was also presented. Another relevant factor that contributes to the research and improvement of the prototype is the municipality, located in the Paraiba Valley region, located in the state of <span style="white-space:nowrap;">São </span>Paulo, consisting of a fertile and relevant scenario of regional, national, international and multinational statistics, thus concluding the effectiveness for the mainly metallurgical industries. The results obtained were satisfactory and consistent, when they were created for the Jominy test device with the ability to submit small pieces for testing and mainly essential in the didactic point of view for a higher education institution of engineering and technology.
文摘In order to prolong the life span of a turbo-generator plant and sustain its performance at high efficiency, it is subjected periodically to regular test to monitor the operational profile and efficiency of power conversion from mechanical energy to electrical energy. Analysis of these test data serves as a measure to indicate deviation from normal operation profile and deterioration of plant performance. This present work implemented the heat balance tests process to three turb- generator units in order to assess the harmony, consistency, and accuracy of results to establish parallel correlation for the test process. The test process involves carrying out a heat balance for the turbo-generators at 50%, 75% and 100% load respectively through the determination of the heat losses through the hydrogen coolers, bearing oil, seal oil and radiation and convention to the atmosphere. Some important results were presented in the paper.
基金supported by National Natural Science Foundation of China(Nos.41274144,41174124,40931053,41121003)CAS Key ResearchProgram KZZD-EW-01973 Program of China(No.2012CB825602)
文摘Abstract The process of ion heating by a monochromatic obliquely propagating low-frequency Alfven wave is investigated. This process can be roughly divided into three stages: at first, the ions are picked up by the Alfven wave in several gyro-periods and a bulk velocity in the transverse direction is achieved; then, the ions are scattered in the transverse direction by the wave, which produces phase differences between the ions and leads to ion heating, especially in the perpendicular direction; and finally, the ions are stochastically heated due to the sub- cyclotron resonance. In this paper, with a test particle method, the efficiency and time scale of the ion stochastic heating by a monochromatic obliquely propagating low-frequency Alfven wave are studied. The results show that with the increase of the amplitude, frequency, and propagation angle of the AlDen wave, the efficiency of the ion stochastic heating increases, while the time scale of the ion stochastic heating decreases. With the increase of the plasma beta β, the ions are stochastically heated with less efficiency, and the time scale increases. We also investigate the heating of heavy ion species (He2+ and O5+), which can be heated with a higher efficiency by the oblique Alfven wave.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program,No.2003AA331190).
文摘Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times as high as one of iron and steel brake disk, the thermal expansion value of the aluminum brake disk is 2 times as big as one of iron and steel brake disk. Mechanical property of the material decreases with the temperature increasing generally during braking, on the other hand, the big thermal stress in the brake disk happens because the material expansion is constrained. Firstly, the reasons of the thermal stress generation and the fracture failure of brake disks during braking are analyzed qualitatively by virtue of three-bar stress frame and sandwich deformation principles in physic, and then the five constraints which cause the thermal stress are summarized. On the base of the experimental results on the 1:1 emergency brake test, the thermal stress and temperature fields are simulated; The behavior of the fracture failure is interpreted semi-quantitatively by finite element analysis, There is the coincident forecast for the fraction position in term of the two methods. In the end, in the light of the analysis and calculation results, it is the general principles observed by the structure design and assembly of the brake disk that are summarized.
基金financial support from the National MCF Energy R&D Program(No.2018YFE0312300)National Natural Science Foundation of China(No.51706100)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20180477)Fundamental Research Funds for the Central Universities(No.30918011205)。
文摘As an important component of tokamaks,the divertor is mainly responsible for extracting heat and helium ash,and the targets of the divertor need to withstand high heat flux of 10 MW m-2 for steady-state operation.In this study,we proposed a new strategy,using microchannel cooling technology to remove high heat load on the targets of the divertor.The results demonstrated that the microchannel-based W/Cu flat-type mock-up successfully withstood the thermal fatigue test of 1000 cycles at 10 MW m^(-2)with cooling water of 26 l min^(-1),30°C(inlet),0.8 MPa(inlet),15 s power on and 15 s dwell time;the maximum temperature on the heat-loaded surface(W surface)of the mock-up was 493°C,which is much lower than the recrystallization temperature of W(1200°C).Moreover,no occurrence of macrocrack and‘hot spot’at the W surface,as well as no detachment of W/Cu tiles were observed during the thermal fatigue testing.These results indicate that microchannel cooling technology is an efflcient method for removing the heat load of the divertor at a low flow rate.The present study offers a promising solution to replace the monoblock design for the EAST divertor.
基金Supported by the National Natural Science Foundation of China(Grant Nos.51975135 and 52005422)Guangzhou Science and Technology Project(Grant No.201707010429)Special Innovation Projects of Universities in Guangdong Province(Grant No.2018GKTSCX085).
文摘With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is promising for the heat dissipation of super-thin electronic equipment.In this study,thermal resistance theoretical model of the micro-channel heat sink was first established.Then,fabrication process of the micro-channel heat sink was introduced.Subsequently,heat transfer performance of the fabricated micro-channel heat sink was tested through the developed testing platform.Results show that the developed micro-channel heat sink has more superior heat dissipation performance over conventional metal solid heat sink and it is well suited for high power LEDs application.Moreover,the micro-channel structures in the heat sink were optimized by orthogonal test.Based on the orthogonal optimization,heat dissipation performance of the micro-channel radiator was further improved.
文摘In this paper an apparatus for measuring heat transfer properties of clothing materials is re-ported.In comparison with the similar device based on constant temperature method and em-ploying a hot plate,the characteristics of this apparatus are as follows.(1)By using microcomputer as its testing control and data processing center,the testingfunction is strengthened,while much more information can be achieved.(2)By using numerical PID control technique supported with software,the informationabout the transient heat transfer properties of clothing materials can be obtained,while the costlowered.In this paper a brief evaluation of the apparatus is also reported.It shows that its accuracyand repeatability reaches the level of similar commercial device,so to some extent the apparatusis practical.
文摘In this paper,the single hole heat transfer power of the ground source heat pump system in Hengshui is compared with data gained from thermal response test.The results show that maximum monitoring data of heat transfer power per meter in summer is 97.1% of the test data,and the average value accounts for 81.8%.The per meter heat power data through on-site thermal response test can provide references for designing engineering project and optimizing ground source heat pump system as these data do not vary greatly from the actual monitoring data.
基金supported jointly by the National Science Foundation of China under Grant No.40305010oversea outstanding young scientist project No.2002-1-2 of Chinese Academy of Sciences.
文摘A modified cumulus parameterization scheme, suitable for use in a seasonal forecast model, is presented. This parameterization scheme is an improvement of the mass flux convection scheme developed by Gregory and Rowntree (1989; 1990). This convection scheme uses a 'bulk' cloud model to present an ensemble of convective clouds, and aims to represent shallow, deep, and mid-level convection. At present, this convection scheme is employed in the NCC T63L20 model (National Climate Center, China Meteorological Administration). Simulation results with this scheme have revealed some deficiencies in the scheme, although to some extent, it improves the accuracy of the simulation. In order to alleviate the deficiencies and reflect the effect of cumulus convection in the actual atmosphere, the scheme is modified and improved. The improvements include (i) the full estimation of the effects of the large-scale convergence in the lower layer upon cumulus convection, (ii) the revision of the initial convective mass flux, and (iii) the regulation of convective-scale downdrafts. A comparison of the results obtained by using the original model and the modified one shows that the improvement and modification of the original convection scheme is successful in simulating the precipitation and general circulation field, because the modified scheme provides a good simulation of the main features of seasonal precipitation in China, and an analysis of the anomaly correlation coefficient between the simulation and the observations confirms the improved results.
基金the support and motivation provided by National 973 Project of China (No. 2012CB026104)National Natural Science Foundation of China (No. 41171064)
文摘A coupled water and heat transport mode is established based on the Richards equation to study water flow and heat transport in soil during freezing process. Both the finite difference and finite element method are used in the discretization, respectively. Two different computer programs are written and used to simulate an indoor unidirectional frozen test. The freezing depth, freezing rate and temperature variation are compared among lab tests, finite difference calculation simulation and finite element calculation simulation. Result shows that: the finite difference method has a better performance in freezing depth simulation while the finite element method has a better performance in numerical stability in one-dimensional freezing simulation.
文摘The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thickness of 20, 40 μm respectively and raw sample named K00. In thermal conductivity measurements, there are little differences among the samples as K00, K20 and K40, they exhibit 153.39, 150.69 and 149.76 W/(m·K), respectively. According to hardness tests, K00, K20 and K40 exhibit 87.9, 259.7 and 344.8 in Vickers values. In the result of salt spray tests to examine the effects on corrosion resistance, K00, K20 and K40 exhibit the grade of 3?5, 2.0?9.8 and 10, respectively. The mutual relation of the above results was analyzed. It is found that the surface treatments do not affect the thermal conductivity of aluminum and result in the improvement of physical properties. As a result of the technology, the surface improvement of aluminum alloy specimen is achieved without thermal degradation. It validates the ability of the aluminum plate heat exchangers with surface treatment to enhance the corrosion resistance. Present work is performed as the first fundamental threshold in the process of aluminum plate heat exchangers development to check out its possibility, therefore the next step-experimental and numerical study of practical aluminum plate heat exchangers will be made.