期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental investigation of anodized/spray pyrolysed nanoporous structure on heat transfer augmentation
1
作者 Kalaiselvam S. +9 位作者 Gugan M.S. Kuraloviyan E. Meganathan R. NiruthiyaPriyan A. Swaminathan M.R. 《Journal of Thermal Science》 SCIE EI CAS CSCD 2009年第4期358-363,共6页
This paper analyzes the effects of nanoporous surface on heat transfer temperaments of assorted thermal conductingmaterials. A phenomenal proposal of wielding the surface roughness to ameliorate the heat transfer rate... This paper analyzes the effects of nanoporous surface on heat transfer temperaments of assorted thermal conductingmaterials. A phenomenal proposal of wielding the surface roughness to ameliorate the heat transfer ratehas been discovered. The maximum increase of heat transfer rate procured by nanoporous layers is 133.3% higherthan the polished bare metals of surface roughness 0.2μm. This plays an imperative role in designing compact refrigerationsystems, chemical and thermal power plants. Experimental results picture a formidable upswing of58.3% heat transfer in chemically etched metals of surface roughness 3 μm, 133.3% in nanoporous surface of porosity75-95 nm formed by electrochemical anodization, and porosity of 40-50 nm formed by spray pyrolysis increasesthe heat transfer by 130%. Effects of porosity, flow velocity and scaling on the energy transfer are alsoscrutinized. This paper also analyzes the multifarious modes of nanoporous fabrication, to contrive both prodigiousand provident system. 展开更多
关键词 Nanoporous surface heat transfer augmentation Electrochemical anodization Spray pyrolysis.
原文传递
An Experimental and Numerical Thermal Flow Analysis in a Solar Air Collector with Different Delta Wing Height Ratios
2
作者 Ghobad Shafiei Sabet Ali Sari +3 位作者 Ahmad Fakhari Nasrin Afsarimanesh Dominic Organ Seyed Mehran Hoseini 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期491-509,共19页
This study conducts both numerical and empirical assessments of thermal transfer and fluid flow characteristics in a Solar Air Collector(SAC)using a Delta Wing Vortex Generator(DWVG),and the effects of different heigh... This study conducts both numerical and empirical assessments of thermal transfer and fluid flow characteristics in a Solar Air Collector(SAC)using a Delta Wing Vortex Generator(DWVG),and the effects of different height ratios(Rh=0.6,0.8,1,1.2 and 1.4)in delta wing vortex generators,which were not considered in the earlier studies,are investigated.Energy and exergy analyses are performed to gain maximum efficiency.The Reynolds number based on the outlet velocity and hydraulic diameter falls between 4400 and 22000,corresponding to the volume flow rate of 5.21–26.07 m^(3)/h.It is observed that the delta wing vortex generators with a higher height ratio yield maximum heat transfer enhancement and overall enhancement ratio.The empirical and numerical findings demonstrate that the exergy and thermal efficiencies decline in a specific range.TheNusselt number,pressure drop,energy,and exergy efficiencies enhance with rising Reynolds number,although the friction coefficient diminishes.The maximum heat transfer enhancement is 57%.According to the evaluation of exergy efficiency,the greatest efficiency of 31.2%is obtained at Rh=1.4 and Reynolds number 22000. 展开更多
关键词 Vortex generators heat transfer augmentation numerical simulation solar air collector empirical height ratio
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部