For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss compo...For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models.展开更多
The effects of the ionic wind on the heat transfer rate from a heated vertical flat plate are described. The ionic wind is induced by three different types of discharge, corona discharge, dielectric barrier discharge ...The effects of the ionic wind on the heat transfer rate from a heated vertical flat plate are described. The ionic wind is induced by three different types of discharge, corona discharge, dielectric barrier discharge (DBD) and dc glow discharge. The heat transfer coefficients for the heated copperplate under free convection conditions with and without an ionic wind are obtained by measuring the temperature and the heating power of the copper plate. It has been proved that the convective heat transfer coefficients increase by several times with the help of the ionic wind. With the ionic wind induced by a uniform dc glow discharge, the heat transfer coefficient of the heated copper plate is highly enhanced compared with those induced by a corona discharge or DBD. With the use of DBD, the breakdown voltage is increased significantly, which is helpful in avoiding a breakdown when heat transfer is enhanced by the ionic wind. In addition, it makes the application of the ionic wind much safer.展开更多
A very simple model for predicting thermal conductivity based on its definiensis was presented. The thermal conductivity obtained using the model provided a good coincidence to the investigations performed by other au...A very simple model for predicting thermal conductivity based on its definiensis was presented. The thermal conductivity obtained using the model provided a good coincidence to the investigations performed by other authors. The heat transfer coefficient was determined by inverse analysis using the temperature measurements. From experimental results, it is noted that heat transfer coefficient increases with the increase of wind velocity and relative humidity, a prediction equation on heat transfer coefficient about wind velocity and relative humidity is given.展开更多
The heat transfer properties of polypropylene insulation at different ambient temperature against wind were analysed. A theoretical model of the combined conductive, convective and radiative heat flow through fibrous ...The heat transfer properties of polypropylene insulation at different ambient temperature against wind were analysed. A theoretical model of the combined conductive, convective and radiative heat flow through fibrous insulating material was presented. Detail study was carried out by using the finite element method. The theoretical results are in accordance to the experimental results which were accomplished in an artificial climate chamber.展开更多
Any system designed to simulate the earth's atmosphere general circulation, must necessarily be based on the spatial-or temporal average conditions. Irregularities in the profiles of air motions that we observe on...Any system designed to simulate the earth's atmosphere general circulation, must necessarily be based on the spatial-or temporal average conditions. Irregularities in the profiles of air motions that we observe on daily weather maps often make lose any real meaning to the general circulation. As complicated and inconsistent that is the daily traffic of air particles, it is interesting to define a general circulation characteristic of the average air transportation around the globe. Indeed, this transport responds to a need to transfer heat from the equator (heat source) to the poles (cold sources). Mbane Biouele formula (2009), derived from Clausius-Clapeyron relation (1832), now allows faithful and unique representation of the tricellular general circulation: Hence, the possibility of access to the earth’s atmosphere prevailing surface winds in summer as well as winter.展开更多
变压器热点温度作为运行经济性、安全性的关键指标,是设备在线监测及状态评估中的重点。该文对变压器内部散热进行研究,着眼于饼式绕组及其油道结构,基于能量流向建立绕组温度变化的物理模型。基于这一模型,在一台内置分布式传感光纤的1...变压器热点温度作为运行经济性、安全性的关键指标,是设备在线监测及状态评估中的重点。该文对变压器内部散热进行研究,着眼于饼式绕组及其油道结构,基于能量流向建立绕组温度变化的物理模型。基于这一模型,在一台内置分布式传感光纤的110kV三相ONAN变压器上开展试验研究,使用分布式光纤测温(distributed temperature sensing,DTS)技术对运行状况下的绕组整体温度分布进行实时监测,分析绕组在ONAN冷却方式下的散热状况。在变压器启动初期,绕组各处散热量较低,温升速率较快。约2 h后,各饼散热量基本与损耗相一致,散热率可达98%以上,因此将这一阶段称为准稳态。准稳态阶段,绕组整体散热率基本一致。负载变化前期不同位置散热量的差异是温度梯度形成的主要原因。基于DTS手段及散热器进出口处油温,提出绕组每饼平均对流换热系数的计算方法,基于无量纲数建立绕组内外表面局部对流换热系数的计算方法,对不同位置、负载率下两种对流换热系数的变化规律进行分析获得了绕组运行过程中对流换热系数分布规律及变化趋势。展开更多
Under the back-side windy condition,the convection and radiation heat transfer characteristics in an iso-flux upward-facing cylindrical cavity were studied by three-dimensional numerical simulation.The impacts of cavi...Under the back-side windy condition,the convection and radiation heat transfer characteristics in an iso-flux upward-facing cylindrical cavity were studied by three-dimensional numerical simulation.The impacts of cavity tilt angle,wind incident angle and wind speed on convection and radiation heat transfer Nusselt number Nuc and Nur were analyzed,and the possible explanations for their impacts were presented.Results show that due to the disturbance of wind,the influence of cavity tilt angle becomes more complicated and is related to wind incident angle and wind speed.The variation of Nuc or Nur with wind incident angle is different for different cavity tilt angles.Despite of the changes of cavity tilt angle or wind incident angle,the Nuc increases with the wind speed while the Nur presents a declination with the increasing of wind speed.Hence,compared with cavity tilt angle and wind incident angle,wind speed may be the dominant factor affecting or controlling the convective and radiation heat transfer of cavity.展开更多
For localized fires, it is necessary to consider the thermal and mechanical responses of building elements subject to uneven heating under the influence of wind. In this paper, the thermomechanical phenomena experienc...For localized fires, it is necessary to consider the thermal and mechanical responses of building elements subject to uneven heating under the influence of wind. In this paper, the thermomechanical phenomena experienced by a ceiling jet and I-beam in a structural fire were simulated. Instead of applying the concept of adiabatic surface temperature (AST) to achieve fluid–structure coupling, this paper proposes a new computational fluid dynamics–finite element method numerical simulation that combines wind, fire, thermal, and structural analyses. First, to analyze the velocity and temperature distributions, the results of the numerical model and experiment were compared in windless conditions, showing good agreement. Vortices were found in the local area formed by the upper and lower flanges of the I-beam and the web, generating a local high-temperature zone and enhancing the heat transfer of convection. In an incoming-flow scenario, the flame was blown askew significantly;the wall temperature was bimodally distributed in the axial direction. The first temperature peak was mainly caused by radiative heat transfer, while the second resulted from convective heat transfer. In terms of mechanical response, the yield strength degradation in the highest-temperature region in windless conditions was found to be significant, thus explaining the stress distribution of steel beams in the fire field. The mechanical response of the overall elements considering the incoming flows was essentially elastic.展开更多
文摘For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models.
文摘The effects of the ionic wind on the heat transfer rate from a heated vertical flat plate are described. The ionic wind is induced by three different types of discharge, corona discharge, dielectric barrier discharge (DBD) and dc glow discharge. The heat transfer coefficients for the heated copperplate under free convection conditions with and without an ionic wind are obtained by measuring the temperature and the heating power of the copper plate. It has been proved that the convective heat transfer coefficients increase by several times with the help of the ionic wind. With the ionic wind induced by a uniform dc glow discharge, the heat transfer coefficient of the heated copper plate is highly enhanced compared with those induced by a corona discharge or DBD. With the use of DBD, the breakdown voltage is increased significantly, which is helpful in avoiding a breakdown when heat transfer is enhanced by the ionic wind. In addition, it makes the application of the ionic wind much safer.
基金Funded by the National Natural Science Foundation of China (Nos. 50779010, 50539010)
文摘A very simple model for predicting thermal conductivity based on its definiensis was presented. The thermal conductivity obtained using the model provided a good coincidence to the investigations performed by other authors. The heat transfer coefficient was determined by inverse analysis using the temperature measurements. From experimental results, it is noted that heat transfer coefficient increases with the increase of wind velocity and relative humidity, a prediction equation on heat transfer coefficient about wind velocity and relative humidity is given.
文摘The heat transfer properties of polypropylene insulation at different ambient temperature against wind were analysed. A theoretical model of the combined conductive, convective and radiative heat flow through fibrous insulating material was presented. Detail study was carried out by using the finite element method. The theoretical results are in accordance to the experimental results which were accomplished in an artificial climate chamber.
文摘Any system designed to simulate the earth's atmosphere general circulation, must necessarily be based on the spatial-or temporal average conditions. Irregularities in the profiles of air motions that we observe on daily weather maps often make lose any real meaning to the general circulation. As complicated and inconsistent that is the daily traffic of air particles, it is interesting to define a general circulation characteristic of the average air transportation around the globe. Indeed, this transport responds to a need to transfer heat from the equator (heat source) to the poles (cold sources). Mbane Biouele formula (2009), derived from Clausius-Clapeyron relation (1832), now allows faithful and unique representation of the tricellular general circulation: Hence, the possibility of access to the earth’s atmosphere prevailing surface winds in summer as well as winter.
文摘变压器热点温度作为运行经济性、安全性的关键指标,是设备在线监测及状态评估中的重点。该文对变压器内部散热进行研究,着眼于饼式绕组及其油道结构,基于能量流向建立绕组温度变化的物理模型。基于这一模型,在一台内置分布式传感光纤的110kV三相ONAN变压器上开展试验研究,使用分布式光纤测温(distributed temperature sensing,DTS)技术对运行状况下的绕组整体温度分布进行实时监测,分析绕组在ONAN冷却方式下的散热状况。在变压器启动初期,绕组各处散热量较低,温升速率较快。约2 h后,各饼散热量基本与损耗相一致,散热率可达98%以上,因此将这一阶段称为准稳态。准稳态阶段,绕组整体散热率基本一致。负载变化前期不同位置散热量的差异是温度梯度形成的主要原因。基于DTS手段及散热器进出口处油温,提出绕组每饼平均对流换热系数的计算方法,基于无量纲数建立绕组内外表面局部对流换热系数的计算方法,对不同位置、负载率下两种对流换热系数的变化规律进行分析获得了绕组运行过程中对流换热系数分布规律及变化趋势。
基金funded by National Key Research and Development Program of China(Grant No.2017YFB0602002,and Grant No.2016YFC0203700)。
文摘Under the back-side windy condition,the convection and radiation heat transfer characteristics in an iso-flux upward-facing cylindrical cavity were studied by three-dimensional numerical simulation.The impacts of cavity tilt angle,wind incident angle and wind speed on convection and radiation heat transfer Nusselt number Nuc and Nur were analyzed,and the possible explanations for their impacts were presented.Results show that due to the disturbance of wind,the influence of cavity tilt angle becomes more complicated and is related to wind incident angle and wind speed.The variation of Nuc or Nur with wind incident angle is different for different cavity tilt angles.Despite of the changes of cavity tilt angle or wind incident angle,the Nuc increases with the wind speed while the Nur presents a declination with the increasing of wind speed.Hence,compared with cavity tilt angle and wind incident angle,wind speed may be the dominant factor affecting or controlling the convective and radiation heat transfer of cavity.
基金financial supports from the National Natural Science Foundation of China(NSFC)(Grant Nos.52078380 and 51820105013)the Top Discipline Plan of Shanghai Universities-Class I(No.2022-3-YB-18)supported by National Key Research and Development Program of 14th Five-Year Plan of China(Project No:2022YFC3801904).
文摘For localized fires, it is necessary to consider the thermal and mechanical responses of building elements subject to uneven heating under the influence of wind. In this paper, the thermomechanical phenomena experienced by a ceiling jet and I-beam in a structural fire were simulated. Instead of applying the concept of adiabatic surface temperature (AST) to achieve fluid–structure coupling, this paper proposes a new computational fluid dynamics–finite element method numerical simulation that combines wind, fire, thermal, and structural analyses. First, to analyze the velocity and temperature distributions, the results of the numerical model and experiment were compared in windless conditions, showing good agreement. Vortices were found in the local area formed by the upper and lower flanges of the I-beam and the web, generating a local high-temperature zone and enhancing the heat transfer of convection. In an incoming-flow scenario, the flame was blown askew significantly;the wall temperature was bimodally distributed in the axial direction. The first temperature peak was mainly caused by radiative heat transfer, while the second resulted from convective heat transfer. In terms of mechanical response, the yield strength degradation in the highest-temperature region in windless conditions was found to be significant, thus explaining the stress distribution of steel beams in the fire field. The mechanical response of the overall elements considering the incoming flows was essentially elastic.