期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical and Experimental Investigation on the In-Flight Melting Behaviour of Granulated Powders in Induction Thermal Plasmas
1
作者 姚耀春 Md.M.HOSSAIN T.WATANABE 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第1期71-77,共7页
An innovative in-flight glass melting technology with thermal plasmas was developed for the purpose of energy conservation and environment protection. In this study, modelling and experiments of argon-oxygen induction... An innovative in-flight glass melting technology with thermal plasmas was developed for the purpose of energy conservation and environment protection. In this study, modelling and experiments of argon-oxygen induction thermal plasmas were conducted to investigate the melting behaviour of granulated soda-lime glass powders injected into the plasma. A two-dimensional local thermodynamic equilibrium (LTE) model was performed to simulate the heat and momentum transfer between plasma and particle. Results showed that the particle temperature was strongly affected by the flow rate of carrier gas and the particle size of raw material. A higher flow rate of carrier gas led to lower particle temperature and less energy transferred to particles which resulted in lower vitrification. The incomplete melting of large particles was attributed to the lower central temperature of the particle caused by a larger heat capacity. The numerical analysis explained well the experimental results, which can provide valuable practical guidelines for the process control in the melting process for the glass industry. 展开更多
关键词 induction thermal plasmas size. heat transfer numerical modelling carrier gas flow rate PARTICLE
下载PDF
Temperature rise of He Ⅱ forced flow and its negative Joule-Thomson effect
2
作者 陈煜 巨永林 +2 位作者 郑青榕 鲁雪生 顾安忠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期260-264,共5页
The temperature rise of He Ⅱ transfer system due to the negative Joule-Thomson(JT)effect is one of the major problems in the He Ⅱ forced flow system design.Negative Joule-Thomson effect of the He Ⅱ forced flow was ... The temperature rise of He Ⅱ transfer system due to the negative Joule-Thomson(JT)effect is one of the major problems in the He Ⅱ forced flow system design.Negative Joule-Thomson effect of the He Ⅱ forced flow was analyzed and calculated in this paper.The temperature rise due to the heat leak along the transfer pipeline was calculated by the simplified equation and was modified by considering the negative Joule-Thomson effect.The modified results were compared with the temperature rise obtained by non-linear differential equations with consideration of the pressure gradient.The results show that the pressure gradient has strong effect on the temperature distribution.The modified results are in good agreement with the values calculated by the complicated equation,which verifies the effectiveness of the simplified equation in calculating the temperature rise when the negative JT effect of He Ⅱ is known. 展开更多
关键词 He Joule-Thomson effect forced flow heat transfer numerical modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部