期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Study on Numerical Simulation of Mold Filling and Heat Transfer in Die Casting Process 被引量:17
1
作者 Liangrong JIA, Shoumei XIONG and Baicheng LIU (Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期269-272,共4页
A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow... A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice. 展开更多
关键词 Study on Numerical Simulation of Mold Filling and heat transfer in Die Casting Process MOLD SIMULATION
下载PDF
Analysis Process of Finite Element Method in Heat Transfer through Fabrics
2
作者 程中浩 孙玉钗 冯勋伟 《Journal of Donghua University(English Edition)》 EI CAS 2006年第1期140-143,共4页
According to heat transfer principle and the process of solving engineering problems by finite element method, examples were given to demonstrate how finite element analysis can be used to describe transient heat tran... According to heat transfer principle and the process of solving engineering problems by finite element method, examples were given to demonstrate how finite element analysis can be used to describe transient heat transfer through fabrics. Details were given to describe how conduction and convection affect temperature distribution and heat loss during heat transfer processes by taking advantage of the quick calculation of FEA software MSC.Marc. Experimental results show good agreement with the theoretical results. 展开更多
关键词 finite element method transient heat transfer process temperature distribution heat flux
下载PDF
A novel method based on entransy theory for setting energy targets of heat exchanger network 被引量:5
3
作者 Li Xia Yuanli Feng +1 位作者 Xiaoyan Sun Shuguang Xiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1037-1042,共6页
A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The ... A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The entransy recovery and entransy dissipation that are affected by temperature differences can be obtained through the shaded area under the composite curves.The method for setting the energy target of the HENs in T-Q diagram based on entransy theory is proposed.A case study of the diesel oil hydrogenation unit is used to illustrate the application of the method.The results show that three different heat transfer temperature differences is 10 K,15 K and 20 K,and the entransy recovery is 5.498×10~7k W·K,5.377×10~7k W·K,5.257×10~7k W·K,respectively.And the entransy transfer efficiency is 92.29%,91.63%,90.99%.Thus,the energy-saving potential of the HENs is obtained by setting the energy target based on the entransy transfer efficiency. 展开更多
关键词 heat transfer Process systems Entransy Energy target T-Qdiagram
下载PDF
Grain Size Distribution and Interfacial Heat Transfer Coefficient during Solidification of Magnesium Alloys Using High Pressure Die Casting Process 被引量:8
4
作者 P. Sharifi J. Jamali +1 位作者 K. Sadayappan J.T. Wood 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第2期324-334,共11页
The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of t... The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of the commercial casting simulation package, ProCASTTM, were used to model the mold filling and solidification events employing a range of interfacial heat transfer coefficient values. The simulation results were used to estimate the centerline cooling curve at various locations through the casting. The centerline cooling curves, together with the die temperature and the thermodynamic properties of the alloy, were then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting, Finally, the local cooling rate was used to calculate the resulting grain size via previously established relationships. The effects of die temperature, filling time and heat transfer coefficient on the grain structure in skin region and core region were quantitatively characterized. It was observed that the grain size of skin region strongly depends on above three factors whereas the grain size of core region shows dependence on the interracial heat transfer coefficient and thickness of the samples. The grain size distribution from surface to center was estimated from the relationship between grain size and the predicted cooling rate. The prediction of grain size matches well with experimental results. A comparison of the predicted and experimentally determined grain size profiles enables the determination of the apparent interracial heat transfer coefficient for different locations. 展开更多
关键词 High pressure die casting Grain size lnterfacial heat transfer coefficient Solidification of magnesium alloys Process parameters
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部