期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Heat Transfer and Acoustic Properties of Open Cell Aluminum Foams
1
作者 Bokhyun KANG Kiyoung KIM Byungmin LEE Jaesoo NOH 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第1期1-6,共6页
The aluminum open cell foams have been prepared by the conventional precision casting method to investigate the thermal and acoustic properties.A water heating system and silencers were organized as a first step for i... The aluminum open cell foams have been prepared by the conventional precision casting method to investigate the thermal and acoustic properties.A water heating system and silencers were organized as a first step for its applications.The temperature increase between the top and bottom of the foam became larger as the cell size increased in the heat transfer measurement.Sound absorption ratio of the close cell foams was 60%-100%, whereas the open cell aluminum foam showed only 10%-20% of sound absorption at low frequency.When the prototype electric water heater manufactured by combining aluminum open cell foam with a heater was heated to 100-400℃,the highest temperature of water was in the range of 16-46~C.This suggests that there could be potential for this type of heater to be used as a commercial electric water heater.Sound silencer made with the aluminum open cell foam was applied to exit of exhaustion side at air pressure line.Sound silencing effect of open-celled aluminum foam showed that the noise level went down by introducing smaller cell size foam. 展开更多
关键词 Open cell aluminum foam heat transfer property Sound absorption Electricwater heater Sound silencer
下载PDF
Thermal Characterization of Lauric Acid and Stearic Acid Binary Eutectic Mixture in Latent Heat Thermal Storage Systems with Tube and Fins
2
作者 丁磊 WANG Lixiong +2 位作者 Georgios Kokogiannakis Lü Yajun 周卫兵 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期753-759,共7页
In order to obtain the suitable phase change material(PCM) with low phase change temperature and improve its heat transfer rate, experimental investigation was conducted. Firstly, different mass ratios of lauric aci... In order to obtain the suitable phase change material(PCM) with low phase change temperature and improve its heat transfer rate, experimental investigation was conducted. Firstly, different mass ratios of lauric acid(LA) and stearic acid(SA) eutectic mixtures were prepared and characterized by differential scanning calorimetry(DSC). Then, the performance of eutectic mixture during charging process under different fin widths in vertical condition, and performance during charging and discharging processes under different inlet temperature heat transfer fluid(HTF) in horizontal condition were investigated, respectively. The results revealed that the LA-SA eutectic mixture had the suitable phase change temperature and desired latent heat for low-temperature water floor heating system. Wide fins and high inlet temperature HTF significantly enhanced the transfer rate and decreased the melting time. 展开更多
关键词 LA-SA binary eutectic mixture thermal properties heat exchanger heat transfer mechanism
下载PDF
Effects of thermal transport properties on temperature distribution within silicon wafer
3
作者 王爱华 牛义红 +1 位作者 陈铁军 P.F.HSU 《Journal of Central South University》 SCIE EI CAS 2014年第4期1402-1410,共9页
A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface... A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level. 展开更多
关键词 silicon wafer thermal transport properties temperature distribution radiation heat transfer
下载PDF
Enhanced Heat Transfer of Carbon Nanotube Nanofluid Microchannels Applied on Cooling Gallium Arsenide Cell 被引量:5
4
作者 ZHANG Huiying YAN Suying +3 位作者 WANG Tao WU Yuting ZHAO Xiaoyan ZHAO Ning 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第6期1475-1486,共12页
Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanoflui... Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanofluids were compared and analyzed experimentally using different preparation methods.The physical properties of nanofluids were tested using a Malvern Zetasizer Nano Instrument and a Hot Disk Thermal Constant Analyzer.Combined with field synergy theory analysis of the heat transfer performance of nanofluids,results show that the thermal conductivity of carbon nanotube nanofluids is higher than that of SiO2/water nanofluids,and the thermal conductivity of nanofluid rises with the increase of mass fraction and temperature.Moreover,the synergistic performance of carbon nanotube nanofluids is also superior to that of SiO2/water nanofluids.When the mass fraction of the carbon nanotube nanofluids is 10%and the SiO2/water nanofluids is 8%,their field synergy numbers and heat transfer enhancement factors both reach maximum.From the perspective of the preparation method,the thermal conductivity of nanofluids dispersed by high shear microfluidizer is higher than that by ultrasonic dispersion.This result provides some reference for the selection and use of working substance in a microchannel cooling concentrated photovoltaic and thermal(CPV/T)system. 展开更多
关键词 concentrated photovoltaic solar cell thermal conductivity carbon nanotube nanofluids field synergy principle heat transfer property
原文传递
Thermal conductivity of micro/nano-porous polymers: Prediction models and applications
5
作者 Haiyan Yu Haochun Zhang +3 位作者 Jinchuan Zhao Jing Liu Xinlin Xia Xiaohu Wu 《Frontiers of physics》 SCIE CSCD 2022年第2期135-153,共19页
Micro/nano-porous polymeric material is considered a unique industrial material due to its extremelylow thermal conductivity, low density, and high surface area. Therefore, it is necessary to establishan accurate ther... Micro/nano-porous polymeric material is considered a unique industrial material due to its extremelylow thermal conductivity, low density, and high surface area. Therefore, it is necessary to establishan accurate thermal conductivity prediction model suiting their applicable conditions and provide atheoretical basis for expanding their applications. In this work, the development of the calculationmodel of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent yearsis summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models ofthermal conductivity are introduced separately according to the conductive and radiative thermalconductivity models. In addition, the thermal conduction part is divided into the gaseous thermalconductivity model, solid thermal conductivity model and gas-solid coupling model. Finally, it isconcluded that, compared with other porous materials, there are few studies on heat transfer of micro/nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effectsat the micro/nanoscale. In particular, the following aspects of porous polymers still need to be furtherstudied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at thenanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studieswould provide a more accurate prediction of thermal conductivity and a broader application in energyconversion and storage systems. 展开更多
关键词 thermal conductivity micro/nanoscale thermal radiation micro/nanoscale thermal conduction porous polymers heat transfer properties
原文传递
On the nanoparticulate flow
6
作者 林建忠 于明州 聂德明 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第6期961-970,共10页
Nanoparticulate flows occur in a wide range of natural and engineering applications hence have received much attention. The purpose of the present paper is to provide a brief review on the research on the nanoparticul... Nanoparticulate flows occur in a wide range of natural and engineering applications hence have received much attention. The purpose of the present paper is to provide a brief review on the research on the nanoparticulate flow in some aspects which consist of the method of moment for solving the particle population balance equation, penetration efficiency, pressure drop and heat transfer in the turbulent nanoparticulate pipe flow, fluctuating-lattice Boltzrnann model for Brownian motion of nanoparticles. 展开更多
关键词 nanoparticulate flow numerical method flow and heat transfer property fluctuating-lattice Boltzmann review
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部