Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical...Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical heat conductivity shows that in ECRH plasmas the calculated ion temperature could be overestimated, so an increase of anomalous ion heat transport is required. To study this effect two scans are presented: over the EC resonance position and over the ECRH power. The EC resonance position varies from the high-field side to the low-field side by variation of the toroidal magnetic field. The scan over the heating power is presented with on-axis and mixed ECRH regimes. Discharges with high anomalous ion heat transport are obtained in all considered regimes. In these discharges the power balance ion heat conductivity exceeds the neoclassical level by up to 10 times. The high ion heat transport regimes are distinguished by three parameters: the ratio Te/Ti, the normalized electron density gradient R/■, and the ion–ion collisionality νii~*. The combination of high Te/Ti, high νii~*, and R/■=6-10 results in values of normalized anomalous ion heat fluxes up to 10 times higher than in the low transport scenario.展开更多
The Argo data are used to calculate eddy(turbulence) heat transport(EHT) in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v ′,T ′ profi...The Argo data are used to calculate eddy(turbulence) heat transport(EHT) in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v ′,T ′ profiles within each 2 ×2 bin.The velocity and temperature anomalies are obtained by removing their climatological values from the Argo "instantaneous" values respectively.Through the Student's t-test and an error evaluation,we obtained a total of 87% Argo bins with significant depth-integrated EHTs(D-EHTs).The results reveal a positive-and-negative alternating D-EHT pattern along the western boundary currents(WBC) and Antarctic Circumpolar Current(ACC).The zonally-integrated D-EHT(ZI-EHT) of the global ocean reaches 0.12 PW in the northern WBC band and –0.38 PW in the ACC band respectively.The strong ZI-EHT across the ACC in the global ocean is mainly caused by the southern Indian Ocean.The ZI-EHT in the above two bands accounts for a large portion of the total oceanic heat transport,which may play an important role in regulating the climate.The analysis of vertical structures of the EHT along the 35 N and 45 S section reveals that the oscillating EHT pattern can reach deep in the northern WBC regions and the Agulhas Return Current(ARC) region.It also shows that the strong EHT could reach 600 m in the WBC regions and 1 000 m in the ARC region,with the maximum mainly located between 100 and 400 m depth.The results would provide useful information for improving the parameterization scheme in models.展开更多
Performances and efficiencies of displacement ventilation(DV) and partial ventilation(PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numer...Performances and efficiencies of displacement ventilation(DV) and partial ventilation(PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numerically investigated. Three levels of Rayleigh number(5.8×1010, 1.0×1012 and 2.1×1012) and two values of source contaminant flux(5 mg/s and 50 mg/s) were considered. The inlet Reynolds numbers were 2×104, 5×104, 1.5×105 and 4.5×105 for DV and 5×105, 1×106, 2×106 and 4×106 for PV, respectively. From the results, it is concluded that the above parameters have very complex impacts on the conjugated heat and mass transports. From points of view of acceptable indoor air quality and ventilation efficiency, PV at Re=1×106 with side-located sources and 65% of the supply air extracted through floor level outlets is the best choice when Ra=5.8×1010. However, DVs at Re=5×104 and Re=1.5×105with center-located sources and floor-mounted air suppliers are the best choices for Ra=1.0×1012 and Ra=2.1×1012, respectively. When source contaminant flux reaches 50 mg/s, local extraction as a supplement of general ventilation is recommended. The results can be a first approximation to 3D numerical investigation and preliminary ventilation system design guidelines for high-rise industrial halls.展开更多
Large eddy simulation (LES) of low Mach num- ber compressible turbulent channel flow with spanwise wall oscillation (SWO) is carried out. The flow field is analyzed with emphases laid on the heat transport as well...Large eddy simulation (LES) of low Mach num- ber compressible turbulent channel flow with spanwise wall oscillation (SWO) is carried out. The flow field is analyzed with emphases laid on the heat transport as well as its rela- tion with momentum transport. When turbulent coherent structures are suppressed by SWO, the turbulent transports are significantly changed, however the momentum and heat transports change in the same manner, which gives the evi- dence of inherently consistent transport mechanisms between momentum and heat in turbulent boundary layers. The Reynolds analogies of all the flow cases are quite good, which confirms again the fact that the transport mechanisms of momentum and heat are consistent, which gives theoreti- cal support for controlling the wall heat flux control by using the drag reducing techniques.展开更多
Based on the climatological reanalysis data of the European Center for Medium-Range Weather Forecasts and the Arctic sea ice data of the National Snow and Ice Data Center, the relationship between the Arctic sea ice a...Based on the climatological reanalysis data of the European Center for Medium-Range Weather Forecasts and the Arctic sea ice data of the National Snow and Ice Data Center, the relationship between the Arctic sea ice area(SIA)and the interannual variation of atmospheric meridional heat transport(AMHT) was analyzed. The results show that the atmospheric meridional heat transported by transient eddy(TAMHT) dominates the June AMHT in midhigh latitudes of the Northern Hemisphere, while the western Baffin Bay(B) and the eastern Greenland(G) are two gates for TAMHT entering the Arctic. TAMHT in the western Baffin Bay(B-TAMHT) and eastern Greenland(G-TAMHT) has a concurrent variation of reverse phase, which is closely related to the summer Arctic SIA.Possible mechanism is that the three Arctic atmospheric circulation patterns(AD, AO and NAO) in June can cause the concurrent variation of TAMHT in the B and G regions. This concurrent variation helps to maintain AD anomaly in summer through wave action and changes the polar air temperature, thus affecting the summer Arctic SIA. Calling the heat entering the Arctic as warm transport and the heat leaving Arctic as cold transport, then the results are classified into three situations based on B-TAMHT and G-TAMHT: warm B corresponding to cold G(WC), cold B corresponding to warm G(CW), cold B corresponding to cold G(CC), while warm B corresponding to warm G is virtually non-existent. During the WC situation, the SIA in the Pacific Arctic sediments and Kara Sea decreases;during the CW situation, the SIA in the Laptev Sea and Kara Sea decreases;during the CC situation, the SIA in the Kara Sea, Laptev Sea and southern Beaufort Sea increases.展开更多
This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations. The model, with no flux adjustment, reproduces well ...This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations. The model, with no flux adjustment, reproduces well the Atlantic Water core temperature (AWCT) in the Arctic Ocean and shows that four largest decadalscale warming episodes occurred in the 1930s, 70s, 80s, and 90s, in agreement with the hydrographic observational data. The difference is that there was no pre-warming prior to the 1930s episode, while there were two pre-warming episodes in the 1970s and 80s prior to the 1990s, leading the 1990s into the largest and prolonged warming in the 20th century. Over the last century, the simulated heat transport via Fram Strait and the Barents Sea was estimated to be, on average, 31.32 TW and 14.82 TW, respectively, while the Bering Strait also provides 15.94 TW heat into the west- ern Arctic Ocean. Heat transport into the Arctic Ocean by the Atlantic Water via Fram Strait and the Barents Sea correlates significantly with AWCT ( C = 0.75 ) at 0- lag. The modeled North Atlantic Oscillation (NAO) index has a significant correlation with the heat transport ( C = 0.37 ). The observed AWCT has a significant correlation with both the modeled AWCT ( C =0.49) and the heat transport ( C =0.41 ). However, the modeled NAO index does not significantly correlate with either the observed AWCT ( C = 0.03 ) or modeled AWCT ( C = 0.16 ) at a zero-lag, indicating that the Arctic climate system is far more complex than expected.展开更多
Heat as a stressor of poultry has been studied extensively for many decades; it affects poultry production on a worldwide basis and has significant impact on well-being and production. More recently, the involvement o...Heat as a stressor of poultry has been studied extensively for many decades; it affects poultry production on a worldwide basis and has significant impact on well-being and production. More recently, the involvement of heat stress in inducing oxidative stress has received much interest. Oxidative stress is defined as the presence of reactive species in excess of the available antioxidant capacity of animal cells. Reactive species can modify several biologically cellular macromolecules and can interfere with cell signaling pathways. Furthermore, during the last decade, there has been an ever-increasing interest in the use of a wide array of natural feed-delivered phytochemicals that have potential antioxidant properties for poultry. In light of this, the current review aims to(1) summarize the mechanisms through which heat stress triggers excessive superoxide radical production in the mitochondrion and progresses into oxidative stress,(2) illustrate that this pathophysiology is dependent on the intensity and duration of heat stress,(3) present different nutritional strategies for mitigation of mitochondrial dysfunction, with particular focus on antioxidant phytochemicals.Oxidative stress that occurs with heat exposure can be manifest in all parts of the body; however, mitochondrial dysfunction underlies oxidative stress. In the initial phase of acute heat stress, mitochondrial substrate oxidation and electron transport chain activity are increased resulting in excessive superoxide production. During the later stage of acute heat stress, down-regulation of avian uncoupling protein worsens the oxidative stress situation causing mitochondrial dysfunction and tissue damage. Typically, antioxidant enzyme activities are upregulated. Chronic heat stress, however, leads to downsizing of mitochondrial metabolic oxidative capacity, up-regulation of avian uncoupling protein, a clear alteration in the pattern of antioxidant enzyme activities, and depletion of antioxidant reserves.Some phytochemicals, such as various types of flavonoids and related compounds, were shown to be beneficial in chronic heat-stressed poultry, but were less or not effective in non-heat-stressed counterparts. This supports the contention that antioxidant phytochemicals have potential under challenging conditions. Though substantial progress has been made in our understanding of the association between heat stress and oxidative stress, the means by which phytochemicals can alleviate oxidative stress have been sparsely explored.展开更多
The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective bound...The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.展开更多
Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In t...Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.展开更多
Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD mod...Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD modeling was used to simulate the transport characteristics of solid particles in supercdtical water through the shell and tube of heat exchangers to alleviate the problems. In this paper, we discuss seven types of exchangers CA, B, C D, E, F and G), which vary in inlet nozzle configuration, header height, inlet pipe diameter and tube pass distribution. In the modeling, the possibility of deposition in the header was evaluated by accumulated mass of particles; we used the velocity contour of supercritical water (SCW) to evaluate the uniformity of the velocity dis- tribution among the tube passes. Simulation results indicated that the optimum heat exchanger had structure F, which had a rectangular configuration of tube pass distractions, a bottom inlet, a 200-mm header height and a 10-ram inlet pipe diameter.展开更多
The annual mean volume and heat transport sketches through the inter-basin passages and transoceanic sections have been constructed based on 1400-year spin up results of the MOM4p 1. The spin up starts from a state of...The annual mean volume and heat transport sketches through the inter-basin passages and transoceanic sections have been constructed based on 1400-year spin up results of the MOM4p 1. The spin up starts from a state of rest, driven by the monthly climatological mean force from the NOAAWorld Ocean Atlas (1994). The volume transport sketch reveals the northward transport throughout the Pacific and southward transport at all latitudes in the Atlantic. The annual mean strength of the Pacific-Arctic-Atlantic through flow is 0.63x106 m3/s in the Bering Strait. The majority of the northward volume transport in the southern Pacific turns into the Indonesian through flow (ITF) and joins the Indian Ocean equatorial current, which subse- quently flows out southward from the Mozambique Channel, with its majority superimposed on the Ant- arctic Circumpolar Current (ACC). This anti-cyclonic circulation around Australia has a strength of 11 x 106 ms /s according to the model-produced result. The atmospheric fresh water transport, known as P-E^R (pre- cipitation minus evaporation plus runoff), constructs a complement to the horizontal volume transport of the ocean. The annual mean heat transport sketch exhibits a northward heat transport in the Atlantic and poleward heat transport in the global ocean. The surface heat flux acts as a complement to the horizontal heat transport of the ocean. The climatological volume transports describe the most important features through the inter-basin passages and in the associated basins, including: the positive P-E+R in the Arctic substantially strengthening the East Greenland Current in summer; semiannual variability of the volume transport in the Drake Passage and the southern Atlantic-Indian Ocean passage; and annual transport vari- ability of the ITF intensifying in the boreal summer. The climatological heat transports show heat storage in July and heat deficit in January in the Arctic; heat storage in January and heat deficit in July in the Antarctic circumpolar current regime (ACCR); and intensified heat transport of the iTF in July. The volume transport of the ITF is synchronous with the volume transport through the southern Indo-Pacific sections, but the year-long southward heat transport of the ITF is out of phase with the heat transport through the equatorial Pacific, which is northward before May and southward after May. This clarifies the majority of the ITF origi- natinR from the southern Pacific Ocean.展开更多
The change in ocean net surface heat flux plays an important role in the climate system.It is closely related to the ocean heat content change and ocean heat transport,particularly over the North Atlantic,where the oc...The change in ocean net surface heat flux plays an important role in the climate system.It is closely related to the ocean heat content change and ocean heat transport,particularly over the North Atlantic,where the ocean loses heat to the atmosphere,affecting the AMOC(Atlantic Meridional Overturning Circulation)variability and hence the global climate.However,the difference between simulated surface heat fluxes is still large due to poorly represented dynamical processes involving multiscale interactions in model simulations.In order to explain the discrepancy of the surface heat flux over the North Atlantic,datasets from nineteen AMIP6 and eight highresSST-present climate model simulations are analyzed and compared with the DEEPC(Diagnosing Earth's Energy Pathways in the Climate system)product.As an indirect check of the ocean surface heat flux,the oceanic heat transport inferred from the combination of the ocean surface heat flux,sea ice,and ocean heat content tendency is compared with the RAPID(Rapid Climate Change-Meridional Overturning Circulation and Heat flux array)observations at 26°N in the Atlantic.The AMIP6 simulations show lower inferred heat transport due to less heat loss to the atmosphere.The heat loss from the AMIP6 ensemble mean north of 26°N in the Atlantic is about10 W m–2 less than DEEPC,and the heat transport is about 0.30 PW(1 PW=1015 W)lower than RAPID and DEEPC.The model horizontal resolution effect on the discrepancy is also investigated.Results show that by increasing the resolution,both surface heat flux north of 26°N and heat transport at 26°N in the Atlantic can be improved.展开更多
Within the t-J model, the heat transport of electron-doped cobaltates is studied based on the fermionspin theory. It is shown that the temperature-dependent thermal conductivity is characterized by the low-temperature...Within the t-J model, the heat transport of electron-doped cobaltates is studied based on the fermionspin theory. It is shown that the temperature-dependent thermal conductivity is characterized by the low-temperature peak located at a finite temperature. The thermal conductivity increases monotonously with increasing temperature at low-temperatures T 〈 0.1 J, and then decreases with increasing temperature for higher temperatures T 〉 0.1 J, in qualitative agreement with experimental result observed from NaxCoO2.展开更多
Perturbative experiments on electron heat transport have been successfully con- ducted on the HL-2A tokamak. The pulse propagation of the electron temperature is induced by the supersonic molecular beam injection (S...Perturbative experiments on electron heat transport have been successfully con- ducted on the HL-2A tokamak. The pulse propagation of the electron temperature is induced by the supersonic molecular beam injection (SMBI), which has characteristics of good localization and deep deposition. A model based on the electron heat transport in cylindrical geometry has been applied to reconstruct the measured amplitude and phase profiles of the electron temperature perturbation. The results show that the heat transport is significantly reduced near the pedestal region of the H-mode plasma. In the "profile stiffness/resilience" region, similar heat diffusivities have been observed in L-mode and H-mode plasmas, which verifies the gradient-driven transport physics in tokamaks.展开更多
The observed meridional overtuming circula- tion (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circu- lation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are us...The observed meridional overtuming circula- tion (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circu- lation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are used to evaluate the volume and heat transport in the eddy-resolving model LASG/IAP Climate system Ocean Model (LICOM). The authors find that the Florida Cur- rent transport and upper mid-ocean transport of the model are underestimated against the observations. The simulated variability of MOC and MHT show a high correlation with the observations, exceeding 0.6. Both the simulated and observed MOC and MHT show a significant seasonal variability. According to the power spectrum analysis, LICOM can represent the mesoscale eddy characteristic of the MOC similar to the observation. The model shows a high correlation of 0.58 for the internal upper mid-ocean transport (MO) and a density difference between the western and eastern boundaries, as noted in previous studies.展开更多
We perform systematic thermal conductivity measurements on heavily hole-doped Ba1-xKxFe2As2 single crystals with 0.747 ≤ x ≤ 0.974. At x=0.747, the K0/T is negligible, indicating a nodeless superconducting gap. A sm...We perform systematic thermal conductivity measurements on heavily hole-doped Ba1-xKxFe2As2 single crystals with 0.747 ≤ x ≤ 0.974. At x=0.747, the K0/T is negligible, indicating a nodeless superconducting gap. A small residual linear term K0/T (=0.035 m W.K-2 cm-1) appears at xz0.826, and it increases slowly up to x=0.974, followed by a substantial increase of more than 20 times to of K0/T clearly shows that the nodal gap appears near x surface topology. The small values of K0/T from x=0.826 the pure KFe2As2 (x=1.0). This doping dependence = 0.8, possibly associated with the change of Fermi to 0.974 are consistent with the Y-shaped nodal s- wave gap recently revealed by angle-resolved photoemission spectroscopy experiments at x=0.9. Furthermore, the substantial increase of K0/T from x=0.974 to 1.0 is inconsistent with a symmetry-imposed d-wave gap in KFe2 As2, and a possible nodal gap structure in KFe2As2 is discussed.展开更多
We first investigate the heat transport in a network model consisting of two coupled dimerized chains. Results indicate that the thermal resistance of each chain increases with the decrease of the mass ratio γ. of th...We first investigate the heat transport in a network model consisting of two coupled dimerized chains. Results indicate that the thermal resistance of each chain increases with the decrease of the mass ratio γ. of the two types of atoms. Then, we find, when a light impurity or a heavy one is added in the two coupled homogeneous chains and coupled with a particle of another chain, the interface thermal resistances Rint and Rint present different dependences on the mass ratio γ Finally, a persistent circulation of energy current is observed in coupled inhomogeneous chains with two pairs of interchain coupling.展开更多
Heat transport in one kind of double-bond linear chains of fullerenes (C60's) is investigated by the classical nonequilibrium molecular dynamics method. It is found that the negative differential thermal resistance...Heat transport in one kind of double-bond linear chains of fullerenes (C60's) is investigated by the classical nonequilibrium molecular dynamics method. It is found that the negative differential thermal resistance (NDTR) is more likely to occur at larger temperature difference and shorter length. In addition, with the increase of the length, the thermal conductivity of the chains increases, and NDTR region shrinks and vanishes in the end. The temperature profiles reveal that a large temperature jump exists at a high-temperature boundary of the chains when NDTR occurs. These results may be helpful for designing thermal devices where low-dimensional C60 polymers can be used.展开更多
Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variabili...Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport(MHT) and meridional salt transport(MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents(WBCs) are estimated for the fi rst time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacifi c. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.展开更多
In this paper a mathematical model of heat transport in human respiratory tract was developed and solved analytically. By means of computer, the mean intra-temperature was calculated. It was consistent with the experi...In this paper a mathematical model of heat transport in human respiratory tract was developed and solved analytically. By means of computer, the mean intra-temperature was calculated. It was consistent with the experimenatal data.展开更多
文摘Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical heat conductivity shows that in ECRH plasmas the calculated ion temperature could be overestimated, so an increase of anomalous ion heat transport is required. To study this effect two scans are presented: over the EC resonance position and over the ECRH power. The EC resonance position varies from the high-field side to the low-field side by variation of the toroidal magnetic field. The scan over the heating power is presented with on-axis and mixed ECRH regimes. Discharges with high anomalous ion heat transport are obtained in all considered regimes. In these discharges the power balance ion heat conductivity exceeds the neoclassical level by up to 10 times. The high ion heat transport regimes are distinguished by three parameters: the ratio Te/Ti, the normalized electron density gradient R/■, and the ion–ion collisionality νii~*. The combination of high Te/Ti, high νii~*, and R/■=6-10 results in values of normalized anomalous ion heat fluxes up to 10 times higher than in the low transport scenario.
基金The Major Program of the National Natural Science Foundation of China under contact No.40890153The National High Tech-nology Research and Development Program of China(863 Program)under contact No.2008AA09A402
文摘The Argo data are used to calculate eddy(turbulence) heat transport(EHT) in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v ′,T ′ profiles within each 2 ×2 bin.The velocity and temperature anomalies are obtained by removing their climatological values from the Argo "instantaneous" values respectively.Through the Student's t-test and an error evaluation,we obtained a total of 87% Argo bins with significant depth-integrated EHTs(D-EHTs).The results reveal a positive-and-negative alternating D-EHT pattern along the western boundary currents(WBC) and Antarctic Circumpolar Current(ACC).The zonally-integrated D-EHT(ZI-EHT) of the global ocean reaches 0.12 PW in the northern WBC band and –0.38 PW in the ACC band respectively.The strong ZI-EHT across the ACC in the global ocean is mainly caused by the southern Indian Ocean.The ZI-EHT in the above two bands accounts for a large portion of the total oceanic heat transport,which may play an important role in regulating the climate.The analysis of vertical structures of the EHT along the 35 N and 45 S section reveals that the oscillating EHT pattern can reach deep in the northern WBC regions and the Agulhas Return Current(ARC) region.It also shows that the strong EHT could reach 600 m in the WBC regions and 1 000 m in the ARC region,with the maximum mainly located between 100 and 400 m depth.The results would provide useful information for improving the parameterization scheme in models.
基金Project(2011BAJ03B07)supported by National Twelve Five-year Science and Technology Support Program of ChinaProject supported by the China Scholarship Council+1 种基金Project(51276057,51376198)supported by the National Natural Science Foundation of ChinaProject(CX2014B064)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Performances and efficiencies of displacement ventilation(DV) and partial ventilation(PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numerically investigated. Three levels of Rayleigh number(5.8×1010, 1.0×1012 and 2.1×1012) and two values of source contaminant flux(5 mg/s and 50 mg/s) were considered. The inlet Reynolds numbers were 2×104, 5×104, 1.5×105 and 4.5×105 for DV and 5×105, 1×106, 2×106 and 4×106 for PV, respectively. From the results, it is concluded that the above parameters have very complex impacts on the conjugated heat and mass transports. From points of view of acceptable indoor air quality and ventilation efficiency, PV at Re=1×106 with side-located sources and 65% of the supply air extracted through floor level outlets is the best choice when Ra=5.8×1010. However, DVs at Re=5×104 and Re=1.5×105with center-located sources and floor-mounted air suppliers are the best choices for Ra=1.0×1012 and Ra=2.1×1012, respectively. When source contaminant flux reaches 50 mg/s, local extraction as a supplement of general ventilation is recommended. The results can be a first approximation to 3D numerical investigation and preliminary ventilation system design guidelines for high-rise industrial halls.
基金supported by Key Subjects of the National Natural Science Foundation of China(10732090)the National Natural Science Foundation of China(50476004)the 111 Project (B08009)
文摘Large eddy simulation (LES) of low Mach num- ber compressible turbulent channel flow with spanwise wall oscillation (SWO) is carried out. The flow field is analyzed with emphases laid on the heat transport as well as its rela- tion with momentum transport. When turbulent coherent structures are suppressed by SWO, the turbulent transports are significantly changed, however the momentum and heat transports change in the same manner, which gives the evi- dence of inherently consistent transport mechanisms between momentum and heat in turbulent boundary layers. The Reynolds analogies of all the flow cases are quite good, which confirms again the fact that the transport mechanisms of momentum and heat are consistent, which gives theoreti- cal support for controlling the wall heat flux control by using the drag reducing techniques.
基金The National Key Research and Development Program of China under contract Nos 2016YFC0402708,2017YFC1502501,2018YFC1508002 and 2016YFA0602102the China Special Fund for Meteorological Research in the Public Interest under contract No.GYHY201506011the National Natural Science Foundation of China under contract Nos 41975134 and 40975040。
文摘Based on the climatological reanalysis data of the European Center for Medium-Range Weather Forecasts and the Arctic sea ice data of the National Snow and Ice Data Center, the relationship between the Arctic sea ice area(SIA)and the interannual variation of atmospheric meridional heat transport(AMHT) was analyzed. The results show that the atmospheric meridional heat transported by transient eddy(TAMHT) dominates the June AMHT in midhigh latitudes of the Northern Hemisphere, while the western Baffin Bay(B) and the eastern Greenland(G) are two gates for TAMHT entering the Arctic. TAMHT in the western Baffin Bay(B-TAMHT) and eastern Greenland(G-TAMHT) has a concurrent variation of reverse phase, which is closely related to the summer Arctic SIA.Possible mechanism is that the three Arctic atmospheric circulation patterns(AD, AO and NAO) in June can cause the concurrent variation of TAMHT in the B and G regions. This concurrent variation helps to maintain AD anomaly in summer through wave action and changes the polar air temperature, thus affecting the summer Arctic SIA. Calling the heat entering the Arctic as warm transport and the heat leaving Arctic as cold transport, then the results are classified into three situations based on B-TAMHT and G-TAMHT: warm B corresponding to cold G(WC), cold B corresponding to warm G(CW), cold B corresponding to cold G(CC), while warm B corresponding to warm G is virtually non-existent. During the WC situation, the SIA in the Pacific Arctic sediments and Kara Sea decreases;during the CW situation, the SIA in the Laptev Sea and Kara Sea decreases;during the CC situation, the SIA in the Kara Sea, Laptev Sea and southern Beaufort Sea increases.
基金supported by the Frontier Research Center for Global Change and International Arctic Research Center,through JAMSTEC,JapanThe climate model was run on the Earth Simulator of JAMSTEC,Yokohama,Japan+1 种基金Constructive discussions with Drs.T.Matsuno,T.Tokioka and N.Suginohara of FRCGC/JAMSTEC andDr.A.Sumi of CCSR/UT are very much appreciatedJW also thanks NOAA Office of Arctic Research for partial support.This is GLERL Contribution No.1496.
文摘This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations. The model, with no flux adjustment, reproduces well the Atlantic Water core temperature (AWCT) in the Arctic Ocean and shows that four largest decadalscale warming episodes occurred in the 1930s, 70s, 80s, and 90s, in agreement with the hydrographic observational data. The difference is that there was no pre-warming prior to the 1930s episode, while there were two pre-warming episodes in the 1970s and 80s prior to the 1990s, leading the 1990s into the largest and prolonged warming in the 20th century. Over the last century, the simulated heat transport via Fram Strait and the Barents Sea was estimated to be, on average, 31.32 TW and 14.82 TW, respectively, while the Bering Strait also provides 15.94 TW heat into the west- ern Arctic Ocean. Heat transport into the Arctic Ocean by the Atlantic Water via Fram Strait and the Barents Sea correlates significantly with AWCT ( C = 0.75 ) at 0- lag. The modeled North Atlantic Oscillation (NAO) index has a significant correlation with the heat transport ( C = 0.37 ). The observed AWCT has a significant correlation with both the modeled AWCT ( C =0.49) and the heat transport ( C =0.41 ). However, the modeled NAO index does not significantly correlate with either the observed AWCT ( C = 0.03 ) or modeled AWCT ( C = 0.16 ) at a zero-lag, indicating that the Arctic climate system is far more complex than expected.
基金the Special Research Fund(BOF)of Ghent University(Belgium)for the financial support of Abdol ah Akbarian(grant number 01SF2711)
文摘Heat as a stressor of poultry has been studied extensively for many decades; it affects poultry production on a worldwide basis and has significant impact on well-being and production. More recently, the involvement of heat stress in inducing oxidative stress has received much interest. Oxidative stress is defined as the presence of reactive species in excess of the available antioxidant capacity of animal cells. Reactive species can modify several biologically cellular macromolecules and can interfere with cell signaling pathways. Furthermore, during the last decade, there has been an ever-increasing interest in the use of a wide array of natural feed-delivered phytochemicals that have potential antioxidant properties for poultry. In light of this, the current review aims to(1) summarize the mechanisms through which heat stress triggers excessive superoxide radical production in the mitochondrion and progresses into oxidative stress,(2) illustrate that this pathophysiology is dependent on the intensity and duration of heat stress,(3) present different nutritional strategies for mitigation of mitochondrial dysfunction, with particular focus on antioxidant phytochemicals.Oxidative stress that occurs with heat exposure can be manifest in all parts of the body; however, mitochondrial dysfunction underlies oxidative stress. In the initial phase of acute heat stress, mitochondrial substrate oxidation and electron transport chain activity are increased resulting in excessive superoxide production. During the later stage of acute heat stress, down-regulation of avian uncoupling protein worsens the oxidative stress situation causing mitochondrial dysfunction and tissue damage. Typically, antioxidant enzyme activities are upregulated. Chronic heat stress, however, leads to downsizing of mitochondrial metabolic oxidative capacity, up-regulation of avian uncoupling protein, a clear alteration in the pattern of antioxidant enzyme activities, and depletion of antioxidant reserves.Some phytochemicals, such as various types of flavonoids and related compounds, were shown to be beneficial in chronic heat-stressed poultry, but were less or not effective in non-heat-stressed counterparts. This supports the contention that antioxidant phytochemicals have potential under challenging conditions. Though substantial progress has been made in our understanding of the association between heat stress and oxidative stress, the means by which phytochemicals can alleviate oxidative stress have been sparsely explored.
基金the Higher Education Commission of Pakistan (HEC) for the financial support through Indigenous program
文摘The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.
基金supported by the National Natural Science Foundation of China(11222217)the State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics(MCMS-0414G01)
文摘Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.
基金Supported by the National Basic Research Program of China(2014CB745100)the National Natural Science Foundation of China(21576197)+1 种基金Tianjin Research Program of Application Foundation and Advanced Technology(14JCQNJC06700)Tianjin Penglai 19-3 Oil Spill Accident Compensation Project(19-3 BC2014-03)
文摘Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD modeling was used to simulate the transport characteristics of solid particles in supercdtical water through the shell and tube of heat exchangers to alleviate the problems. In this paper, we discuss seven types of exchangers CA, B, C D, E, F and G), which vary in inlet nozzle configuration, header height, inlet pipe diameter and tube pass distribution. In the modeling, the possibility of deposition in the header was evaluated by accumulated mass of particles; we used the velocity contour of supercritical water (SCW) to evaluate the uniformity of the velocity dis- tribution among the tube passes. Simulation results indicated that the optimum heat exchanger had structure F, which had a rectangular configuration of tube pass distractions, a bottom inlet, a 200-mm header height and a 10-ram inlet pipe diameter.
基金The National Basic Research Program Grant of China under contract No.2011CB403502the National High Technology Research and Development Program(863 Program)under contract No.2013AA09A506+2 种基金the Global Change and Air-Sea Interaction Program under contract No.GASI-03-01-01-04the International Cooperation Program Grant of China under contract No.2010DFB23580author Guan Yuping is supported by the National Natural Science Foundation of China under contract Nos 40976011 and 91228202
文摘The annual mean volume and heat transport sketches through the inter-basin passages and transoceanic sections have been constructed based on 1400-year spin up results of the MOM4p 1. The spin up starts from a state of rest, driven by the monthly climatological mean force from the NOAAWorld Ocean Atlas (1994). The volume transport sketch reveals the northward transport throughout the Pacific and southward transport at all latitudes in the Atlantic. The annual mean strength of the Pacific-Arctic-Atlantic through flow is 0.63x106 m3/s in the Bering Strait. The majority of the northward volume transport in the southern Pacific turns into the Indonesian through flow (ITF) and joins the Indian Ocean equatorial current, which subse- quently flows out southward from the Mozambique Channel, with its majority superimposed on the Ant- arctic Circumpolar Current (ACC). This anti-cyclonic circulation around Australia has a strength of 11 x 106 ms /s according to the model-produced result. The atmospheric fresh water transport, known as P-E^R (pre- cipitation minus evaporation plus runoff), constructs a complement to the horizontal volume transport of the ocean. The annual mean heat transport sketch exhibits a northward heat transport in the Atlantic and poleward heat transport in the global ocean. The surface heat flux acts as a complement to the horizontal heat transport of the ocean. The climatological volume transports describe the most important features through the inter-basin passages and in the associated basins, including: the positive P-E+R in the Arctic substantially strengthening the East Greenland Current in summer; semiannual variability of the volume transport in the Drake Passage and the southern Atlantic-Indian Ocean passage; and annual transport vari- ability of the ITF intensifying in the boreal summer. The climatological heat transports show heat storage in July and heat deficit in January in the Arctic; heat storage in January and heat deficit in July in the Antarctic circumpolar current regime (ACCR); and intensified heat transport of the iTF in July. The volume transport of the ITF is synchronous with the volume transport through the southern Indo-Pacific sections, but the year-long southward heat transport of the ITF is out of phase with the heat transport through the equatorial Pacific, which is northward before May and southward after May. This clarifies the majority of the ITF origi- natinR from the southern Pacific Ocean.
基金supported by the National Natural Science Foundation of China(Grant No.42075036)Fujian Key Laboratory of Severe Weather(Grant No.2021KFKT02)+2 种基金the scientific research start-up grant of Guangdong Ocean University(Grant No.R20001)supported by the University of Reading as a visiting fellowsupported by the UK National Centre for Earth Observation Grant No.NE/RO16518/1。
文摘The change in ocean net surface heat flux plays an important role in the climate system.It is closely related to the ocean heat content change and ocean heat transport,particularly over the North Atlantic,where the ocean loses heat to the atmosphere,affecting the AMOC(Atlantic Meridional Overturning Circulation)variability and hence the global climate.However,the difference between simulated surface heat fluxes is still large due to poorly represented dynamical processes involving multiscale interactions in model simulations.In order to explain the discrepancy of the surface heat flux over the North Atlantic,datasets from nineteen AMIP6 and eight highresSST-present climate model simulations are analyzed and compared with the DEEPC(Diagnosing Earth's Energy Pathways in the Climate system)product.As an indirect check of the ocean surface heat flux,the oceanic heat transport inferred from the combination of the ocean surface heat flux,sea ice,and ocean heat content tendency is compared with the RAPID(Rapid Climate Change-Meridional Overturning Circulation and Heat flux array)observations at 26°N in the Atlantic.The AMIP6 simulations show lower inferred heat transport due to less heat loss to the atmosphere.The heat loss from the AMIP6 ensemble mean north of 26°N in the Atlantic is about10 W m–2 less than DEEPC,and the heat transport is about 0.30 PW(1 PW=1015 W)lower than RAPID and DEEPC.The model horizontal resolution effect on the discrepancy is also investigated.Results show that by increasing the resolution,both surface heat flux north of 26°N and heat transport at 26°N in the Atlantic can be improved.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10404001 and 90403005
文摘Within the t-J model, the heat transport of electron-doped cobaltates is studied based on the fermionspin theory. It is shown that the temperature-dependent thermal conductivity is characterized by the low-temperature peak located at a finite temperature. The thermal conductivity increases monotonously with increasing temperature at low-temperatures T 〈 0.1 J, and then decreases with increasing temperature for higher temperatures T 〉 0.1 J, in qualitative agreement with experimental result observed from NaxCoO2.
基金supported by National Natural Science Foundation of China (Nos. 10975048,10975049 and 11005037)the National Magnetic Confinement Fusion Science Program of China (Nos. 2010GB102003,2010GB101003 and 2010GB101004)
文摘Perturbative experiments on electron heat transport have been successfully con- ducted on the HL-2A tokamak. The pulse propagation of the electron temperature is induced by the supersonic molecular beam injection (SMBI), which has characteristics of good localization and deep deposition. A model based on the electron heat transport in cylindrical geometry has been applied to reconstruct the measured amplitude and phase profiles of the electron temperature perturbation. The results show that the heat transport is significantly reduced near the pedestal region of the H-mode plasma. In the "profile stiffness/resilience" region, similar heat diffusivities have been observed in L-mode and H-mode plasmas, which verifies the gradient-driven transport physics in tokamaks.
基金jointly supported by the National Basic Research Program of China (Grant No. 2010CB950502)"Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issues" of the Chinese Academy of Sciences(Grant No. XDA05110302)+2 种基金the National High Technology Research and Development Program of China (863 Program, Grant No.2010AA012304)the National Natural Science Foundation of China (Grant No. 40975065)Data from the RAPID-MOCHA program are funded by the U.S. National Science Foundation
文摘The observed meridional overtuming circula- tion (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circu- lation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are used to evaluate the volume and heat transport in the eddy-resolving model LASG/IAP Climate system Ocean Model (LICOM). The authors find that the Florida Cur- rent transport and upper mid-ocean transport of the model are underestimated against the observations. The simulated variability of MOC and MHT show a high correlation with the observations, exceeding 0.6. Both the simulated and observed MOC and MHT show a significant seasonal variability. According to the power spectrum analysis, LICOM can represent the mesoscale eddy characteristic of the MOC similar to the observation. The model shows a high correlation of 0.58 for the internal upper mid-ocean transport (MO) and a density difference between the western and eastern boundaries, as noted in previous studies.
基金Supported by the National Basic Research Program under Grant Nos 2012CB821402 and 2015CB921401the National Natural Science Foundation of China+1 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher LearningSTCSM of China(No 15XD1500200)
文摘We perform systematic thermal conductivity measurements on heavily hole-doped Ba1-xKxFe2As2 single crystals with 0.747 ≤ x ≤ 0.974. At x=0.747, the K0/T is negligible, indicating a nodeless superconducting gap. A small residual linear term K0/T (=0.035 m W.K-2 cm-1) appears at xz0.826, and it increases slowly up to x=0.974, followed by a substantial increase of more than 20 times to of K0/T clearly shows that the nodal gap appears near x surface topology. The small values of K0/T from x=0.826 the pure KFe2As2 (x=1.0). This doping dependence = 0.8, possibly associated with the change of Fermi to 0.974 are consistent with the Y-shaped nodal s- wave gap recently revealed by angle-resolved photoemission spectroscopy experiments at x=0.9. Furthermore, the substantial increase of K0/T from x=0.974 to 1.0 is inconsistent with a symmetry-imposed d-wave gap in KFe2 As2, and a possible nodal gap structure in KFe2As2 is discussed.
基金Project supported by the Key Project of the Educational Department of Hunan Province of China (Grant No. 04A058)
文摘We first investigate the heat transport in a network model consisting of two coupled dimerized chains. Results indicate that the thermal resistance of each chain increases with the decrease of the mass ratio γ. of the two types of atoms. Then, we find, when a light impurity or a heavy one is added in the two coupled homogeneous chains and coupled with a particle of another chain, the interface thermal resistances Rint and Rint present different dependences on the mass ratio γ Finally, a persistent circulation of energy current is observed in coupled inhomogeneous chains with two pairs of interchain coupling.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11004082 and 11005048the Natural Science Foundation of Guangdong Province under Grant No 2014A030313367
文摘Heat transport in one kind of double-bond linear chains of fullerenes (C60's) is investigated by the classical nonequilibrium molecular dynamics method. It is found that the negative differential thermal resistance (NDTR) is more likely to occur at larger temperature difference and shorter length. In addition, with the increase of the length, the thermal conductivity of the chains increases, and NDTR region shrinks and vanishes in the end. The temperature profiles reveal that a large temperature jump exists at a high-temperature boundary of the chains when NDTR occurs. These results may be helpful for designing thermal devices where low-dimensional C60 polymers can be used.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956001)the CMA(No.GYHY201306018)+2 种基金the Chinese Academy of Sciences(CAS)(No.XDA11010301)the National Natural Science Foundation of China(Nos.41176019,41421005,U1406401)the State Oceanic Administration(SOA)(No.GASI-03-01-01-05)
文摘Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport(MHT) and meridional salt transport(MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents(WBCs) are estimated for the fi rst time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacifi c. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.
文摘In this paper a mathematical model of heat transport in human respiratory tract was developed and solved analytically. By means of computer, the mean intra-temperature was calculated. It was consistent with the experimenatal data.