Zonal heat treatment(ZHT) was conducted in situ to 14.5 mm-thick TC4 alloy plates by means of defocused electron beam after welding. The effects of ZHT on residual stresses,microstructures and mechanical properties of...Zonal heat treatment(ZHT) was conducted in situ to 14.5 mm-thick TC4 alloy plates by means of defocused electron beam after welding. The effects of ZHT on residual stresses,microstructures and mechanical properties of electron beam welded joints were investigated. Experimental results show residual stresses after welding are mostly relieved through ZHT,and the maximum values of longitudinal tensile stress and transverse compressive stress reduce by 76% and 65%,respectively. The tensile strength and ductility of welded joint after ZHT at slow scanning velocity are improved because of the reduction of residual stress and the microstructural changes of the base and weld metal. ZHT at fast scanning velocity is detrimental to the ductility of welded joint,which is resulted from insufficiently coarsened alpha phase in the fusion zone and the appearance of martensite in the base metal.展开更多
hi this paper, the non-linear finite element method had been applied to calculate the thermal stress evolving process of the large-scale bearing roller during heating process of final heat treatment. It was found that...hi this paper, the non-linear finite element method had been applied to calculate the thermal stress evolving process of the large-scale bearing roller during heating process of final heat treatment. It was found that two stress peaks appeared during heating process and the second stress peak was higher than the first. If the preheating time was elongated, the second stress peak was reduced distinctly. Therefore, the pre-heating time should be elongated suitably to ensure safety in the practical manufacture process.展开更多
The standard heat treatment of cast nickel base superalloy K403 is the solid solution treatment of 1210℃/4h, air cooling. It is very difficult to meet the requirements of Aviation Standard HB5155, in which the stre...The standard heat treatment of cast nickel base superalloy K403 is the solid solution treatment of 1210℃/4h, air cooling. It is very difficult to meet the requirements of Aviation Standard HB5155, in which the stress rupture life at 750℃ and 645MPa is longer than 50h. The results showed that the intermediate temperature stress rupture properties impaired by treatment of 1210℃/4h were due to precipitation of too small γ′ phase(<0.2μm) in grains and absence of the secondary carbides at grain boundaries. Microstructure containing the intergranular M6C carbides with envelope of γ′ and the residual coarse γ′ was obtained by means of 1180℃/4h treatment, therefore the stress rupture life was obviously increased to meet the demand of HB5155. The effect of γ′ size was also discussed from the view point of deformation mechanism in this paper.展开更多
In order to improve the stress corrosion cracking(SCC) resistance of 7A05Al alloy, four different heat treatment processes were performed. After the heat treatments, the stress corrosion cracking resistance, mechanica...In order to improve the stress corrosion cracking(SCC) resistance of 7A05Al alloy, four different heat treatment processes were performed. After the heat treatments, the stress corrosion cracking resistance, mechanical properties and microstructures of 7A05A1 alloys were studied. The results show that the retrogression and reaging(RRA) treated specimens possess the highest SCC resistance with slightly reduced strength compared with the other specimens. Thus RRA is the best process in terms of the optimal combination of SCC resistance and strength. Further TEM observation reveals that the RRA treated specimens are characterized by the fine equiaxed grains, dispersed second phase and wide PFZ. The pre-aging treated specimens show lower SCC resistance but higher strength as compared with the RRA treated ones. Equiaxed grains are also observed in the pre-aging treated samples by TEM, indicating that the anisotropy is eliminated. However, the dual aging and deformation plus aging treated specimens are demonstrated by large anisotropy.展开更多
The distributions of temperature and residual stresses in thin plates of BT20titanium alloy are numerically analyzed by three-dimensional finite element software duringelectron beam welding and electron beam local pos...The distributions of temperature and residual stresses in thin plates of BT20titanium alloy are numerically analyzed by three-dimensional finite element software duringelectron beam welding and electron beam local post-weld heat treatment (EBLPWHT). Combined withnumerical calculating results, the effects of different EBLPWHT mode and parameters, including heattreating position, heating width and heating time, on the distribution of welding residual stressesare analyzed. The results show that, the residual tensile stresses in weld center can be largelydecreased when the weld is heat treated at back preface of the plate. The numerical results alsoindicated that the magnitude of the residual longitudinal stresses of the weld and the zone vicinityof the weld is decreased, and the range of the residual longitudinal stresses is increased alongwith the increase of heating width and heating time.展开更多
The hardness and residual stress in the forging for cold roller during low temperature tempering,and the relationship of residual stress and cooling temperature of high temperature tempering for heavy forgings were st...The hardness and residual stress in the forging for cold roller during low temperature tempering,and the relationship of residual stress and cooling temperature of high temperature tempering for heavy forgings were studied.The stress relaxation constant at low temperature tempering and the elasto-plastisity inversion temperature at high temperature tempering were found.The results are of great importance to determine rational tempering cooling process of heavy forgings.展开更多
Comparative investigations were carried out of the effect of heat treatment regimes Jor steel GC-4(40CrMnSiMoVA)on its crack propagating rates,from corrosion fatigue, (da/dN)_(CF),or stress corrosion cracking,(da/dt)_...Comparative investigations were carried out of the effect of heat treatment regimes Jor steel GC-4(40CrMnSiMoVA)on its crack propagating rates,from corrosion fatigue, (da/dN)_(CF),or stress corrosion cracking,(da/dt)_(SCC),in media with various constituents and pH values.Both(da/dN)_(CF) and(da/dt)_(SCC) accelerate with the increase of yield stress of the steel,yet the former is far less than the later.In comparison with media,the (da/dt)_(SCC) in distilled water is slightly greater than that in 3.5% NaCl solution,and the (da/dN)_(CF) in distilled water is far less than that in 3.5% NaCl solution.With the pH value increasing in 3.5% NaCl solution,the(da/dN)_(CF) lowers down and the(da/dt)_(SCC) speeds up.An explanation was also proposed with concept of the cyclic hardening and softening at crack tip,as well as the crack closure and occluded cell effect.展开更多
Significant compressive stress may be induced in thin plate weldment by anti-welding heating treatment (AWHT) with a temperature difference above 350℃, and an interesting phenomenon of obvious residual stress reducti...Significant compressive stress may be induced in thin plate weldment by anti-welding heating treatment (AWHT) with a temperature difference above 350℃, and an interesting phenomenon of obvious residual stress reduction on non-treated surface was discovered. The method of AWHT has no great effect on the mechanical properties including hardness, strength and toughness of the metal material. The results in the paper prompt a possibility application in shipbuilding industry.展开更多
The effects of stepped solution heat treatments on the dissolution of soluble remnant constituents and mechanical properties of 7055 aluminum alloy were investigated. It was shown that a suitable pretreatment at lower...The effects of stepped solution heat treatments on the dissolution of soluble remnant constituents and mechanical properties of 7055 aluminum alloy were investigated. It was shown that a suitable pretreatment at lower temperature can enable complete dissolution of the constituent particles in 7055 alloy without overheating by subsequent high temperature solution treatment. This in turn increased the tensile strength and fracture toughness of 7055 alloy to 805 MPa and 41.5 MPa·m 1/2 respectively, with approximately 9% tensile elongation. The near solvus pre precipitation following after high temperature solution treatment was also studied on 7055 aluminum alloy. The effect of the pre precipitation on the microstructure, age hardening and stress corrosion cracking of 7055 alloy was investigated. The optical and transimission electron microscopy observation show that the near solvus pre precipitation can be limited to grain boundary and enhance the discontinuity of grain boundary precipitates in the subsequent ageing. The stress corrosion cracking resistance of aged 7055 alloy can be improved via the pre precipitation with non deteriorated strength and plasticity.展开更多
Local postweld heat treatment (PWHT)is usually performed when it is impractical to heat treat the whole vessel in a furnace, Many factors have an influence on PWHT procedures, such as size of the pipe,heated widths, ...Local postweld heat treatment (PWHT)is usually performed when it is impractical to heat treat the whole vessel in a furnace, Many factors have an influence on PWHT procedures, such as size of the pipe,heated widths, insulation conditions, heating rates soak temperatures and hold times, material composition etc,. However up to now the influences these factors have on PWHT are not very clearly understood and different criteria for sizing the parameters can be found in different codes. This study provides a direct method to assess the effectiveness of local PWHT.An axisymmetrical model was used based on the thermal-visco-elastic-plastic Finite Element Method with the consideration of creep phenomena. By using this method both temperature and stress distributions can be simulated during whole local PWHT history. The computation results of temperature distributions and the strain histaries during local PWHT are compared with the experiments, and good agreements are obtained, Investigations show that the thermal stresses induced by local PWHT are much affected by creep behavior and the changes of Young's Modulus. The study of stress relief history shows that the stresses decrease quickly in the heating stage, then decrease slowly according to creep law in the hold stage and then studdenly increase when the cooling stage starts. The study shows the possibility that through a series of computations the effects of many factors can be assessed and the optimum parnmeters can be found. Compared with the heated widths based apon some applicable codes, it is found that a heated area of 2.5 on either side of the weld seems more reasonable.展开更多
In this paper, mathematical models and FEA formulation for implementing heat treatment process simulation were given out. The various coupling effects were treated. The object-oriented methodology of developing heat t...In this paper, mathematical models and FEA formulation for implementing heat treatment process simulation were given out. The various coupling effects were treated. The object-oriented methodology of developing heat treatment simulation was explored. The framework of simulating programs was outlined. The main C++ classes were developed, some important member functions were implemented. The present research work shows that using object-oriented method can greatly reduce the amount of coding. The programs are clear in conception, easy to test, modify and expand. By using the methodology introduced in this paper, one heat treatment process three dimensional simulation tool was developed.展开更多
X-ray diffraction was utilized to measure the residual stress of 45 mm UNS N08810 plates after post-weld heat treatment at temperatures of 680℃ and 900℃, which showed reductions of 86.9% and 71.6% in the residual st...X-ray diffraction was utilized to measure the residual stress of 45 mm UNS N08810 plates after post-weld heat treatment at temperatures of 680℃ and 900℃, which showed reductions of 86.9% and 71.6% in the residual stress, respectively. This indicates that post-weld heat treatment can play a significant role in reducing residual stress, while no significant effects on tensile stress and micro-hardness of the welding joint were observed after treatment.展开更多
The plan of heat-treatment process for 2014Al alloy is designed using orthogonal method, the heat-treatment experiments are made and the mechanical properties are tested according to the designed plan. The effect of s...The plan of heat-treatment process for 2014Al alloy is designed using orthogonal method, the heat-treatment experiments are made and the mechanical properties are tested according to the designed plan. The effect of solid solution temperature, ageing temperature, ageing time on microscopic mechanism of the mechanical properties of the 2014Al alloy is studied using microscope, transmission electron microscope. The best heat treatment process of the 2014Al alloy is developed. The experimental results indicate that the strength σ<sub>b</sub>, yield stress σ<sub>0.2</sub>, percentage elongation δ of the alloy reach separately 490~500 MPa, 450~490 MPa, 10~12% adopting the new heat treatment process. Compared with GB, the strength increases 20~30%, the percentage elongation increases 30~40%. The mechanism of the new heat-treatment process is also discussed.展开更多
In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures i...In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures in heat affected zone by annealing at 1300 ℃ for 10 min and then, quenching in water; the other was to get different simulating solutions of acidic soil in Yingtan in south- east China. The SCC susceptibilities of X70 pipeline steel before and after quenching in the simulating solutions were analyzed using slow stain rate test (SSRT) and potentiodynamic polarization technique to investigate the SCC electrochemical mechanism of different microstructures further. The results show that SCC appears in the original microstructure and the quenched microstructure as the polarization potential decreases. Hydrogen revolution accelerates SCC of the two tested materials within the range of-850 mV to -1200 mV vs. SCE. Microstructural hardening and grain coarsening also increase SCC. The SCC mechanisms are different, anodic dissolution is the key of causing SCC as the polarization potential is higher than the null current potential, and hydrogen embrittlement will play a more important role to SCC as the polarization potential lower than the null current potential.展开更多
The effects of two-stage aging and retrogression and reaging heat treatment on the fracture toughness and stress corrosion cracking resistance of 7475 alloy were studied. The fracture toughness, conductivity and stren...The effects of two-stage aging and retrogression and reaging heat treatment on the fracture toughness and stress corrosion cracking resistance of 7475 alloy were studied. The fracture toughness, conductivity and strength of samples of nine groups under duplex aging conditions and three retrogression and reaging heat treatments were also measured. Incorporating the microstructure and property, we found that when the condition of the first order aging kept identical, the fracture toughness and stress corrosion cracking resistance increase with aging time and the second aging temperature. The optimal treatment conditions are ( 115℃×7h + 185 ℃×13h) among all tested two-stage aging treatments. Although the 7475 alloy treated by RRA method shows the highest strength and its stress corrosion cracking resistance after twenty minutes retrogression can also reach the same level as those by the optimal treatment of (115℃×7h+ 185℃×13h ), the fracture toughness is even low.展开更多
The influence of different cooling during heat treatment on microstructure and stress rupture property of DZ951 alloy was investigated by optical microscope, SEM and TEM. The results show that the shape of MC carbide ...The influence of different cooling during heat treatment on microstructure and stress rupture property of DZ951 alloy was investigated by optical microscope, SEM and TEM. The results show that the shape of MC carbide changes from Chinese script in as-cast alloy to small block with different cooling ways. The size of γ′ phase decreases and the shape of γ′ phase changes from cuboid to sphere with the increase of cooling rate. The γ′ phase splits into eight small cuboids when the alloy is cooled by furnace cooling. The stress rupture life of the samples by air cooling is superior to that by other cooling way.展开更多
This paper dealt with the influence of residual stress on the dimensional instability of 7075 aluminum cone-shaped shells. Finite element method was introduced to calculate residual stress distributions in 7075 alumin...This paper dealt with the influence of residual stress on the dimensional instability of 7075 aluminum cone-shaped shells. Finite element method was introduced to calculate residual stress distributions in 7075 aluminum cone-shaped shells during conventional heat treatment (CHT) and deep cryogenic treatment (DCT). An example was given to demonstrate effects of deep cryogenic treatment (DCT) and conventional heat treatment (CHT) on dimensional instability. It is concluded that initial residual stresses have detrimental influence on the dimensional instability of 7075 aluminum cone-shaped shells.展开更多
The objective of this study is to investigate the influence of post weld heat treatment (PWHT) on the distribution of residual stress in welded pipes with large thickness. The detailed pass-by-pass finite element si...The objective of this study is to investigate the influence of post weld heat treatment (PWHT) on the distribution of residual stress in welded pipes with large thickness. The detailed pass-by-pass finite element simulation was developed to study the residual stress in narrow gap multipass welding of pipes with a wall thickness of 150 mm and 89 weld beads. The effect of PWHT on welding residual stress was also investigated by means of numerical analysis. The simulated results show that the hoop stress is tensile stress in the weld region and compressive stress in the parent metal areas adjacent to weld seam. After heat treatment, the residual stresses decrease substantially, and the simulated residual stress is validated by the experimental one. The distribution of the through-wall axial residual stress along the weld center line is a self-equilibrating type.展开更多
Selective Laser Melting (SLM) shows a big potential among metal additive manufacturing (AM) technologies. However, the large thermal gradients and the local melting and solidification processes of SLM result in the pr...Selective Laser Melting (SLM) shows a big potential among metal additive manufacturing (AM) technologies. However, the large thermal gradients and the local melting and solidification processes of SLM result in the presence of a significant amount of residual stresses in the as built parts. These internal stresses will not only affect mechanical properties, but also increase the risk of Stress Corrosion Cracking (SCC). A twister used in an air extraction pump of a condenser to create a swirl in the water, was chosen as a candidate component to be produced by SLM in 316 L stainless steel. Since the main expected damage mechanism of this component in service is corrosion, corrosion tests were carried out on an as-built twister as well as on heat treated components. It was shown that a low temperature heat treatment at 450℃ had only a limited effect on the residual stress reduction and concomitant corrosion properties, while the internal stresses were significantly reduced when a high temperature heat treatment at 950℃ was applied. Furthermore, a specific stress corrosion sensitivity test proved to be a useful tool to evaluate the internal stress distribution in a specific component.展开更多
文摘Zonal heat treatment(ZHT) was conducted in situ to 14.5 mm-thick TC4 alloy plates by means of defocused electron beam after welding. The effects of ZHT on residual stresses,microstructures and mechanical properties of electron beam welded joints were investigated. Experimental results show residual stresses after welding are mostly relieved through ZHT,and the maximum values of longitudinal tensile stress and transverse compressive stress reduce by 76% and 65%,respectively. The tensile strength and ductility of welded joint after ZHT at slow scanning velocity are improved because of the reduction of residual stress and the microstructural changes of the base and weld metal. ZHT at fast scanning velocity is detrimental to the ductility of welded joint,which is resulted from insufficiently coarsened alpha phase in the fusion zone and the appearance of martensite in the base metal.
文摘hi this paper, the non-linear finite element method had been applied to calculate the thermal stress evolving process of the large-scale bearing roller during heating process of final heat treatment. It was found that two stress peaks appeared during heating process and the second stress peak was higher than the first. If the preheating time was elongated, the second stress peak was reduced distinctly. Therefore, the pre-heating time should be elongated suitably to ensure safety in the practical manufacture process.
文摘The standard heat treatment of cast nickel base superalloy K403 is the solid solution treatment of 1210℃/4h, air cooling. It is very difficult to meet the requirements of Aviation Standard HB5155, in which the stress rupture life at 750℃ and 645MPa is longer than 50h. The results showed that the intermediate temperature stress rupture properties impaired by treatment of 1210℃/4h were due to precipitation of too small γ′ phase(<0.2μm) in grains and absence of the secondary carbides at grain boundaries. Microstructure containing the intergranular M6C carbides with envelope of γ′ and the residual coarse γ′ was obtained by means of 1180℃/4h treatment, therefore the stress rupture life was obviously increased to meet the demand of HB5155. The effect of γ′ size was also discussed from the view point of deformation mechanism in this paper.
基金Project(Z172003A001) supported by the Ministerial Level Research Foundation
文摘In order to improve the stress corrosion cracking(SCC) resistance of 7A05Al alloy, four different heat treatment processes were performed. After the heat treatments, the stress corrosion cracking resistance, mechanical properties and microstructures of 7A05A1 alloys were studied. The results show that the retrogression and reaging(RRA) treated specimens possess the highest SCC resistance with slightly reduced strength compared with the other specimens. Thus RRA is the best process in terms of the optimal combination of SCC resistance and strength. Further TEM observation reveals that the RRA treated specimens are characterized by the fine equiaxed grains, dispersed second phase and wide PFZ. The pre-aging treated specimens show lower SCC resistance but higher strength as compared with the RRA treated ones. Equiaxed grains are also observed in the pre-aging treated samples by TEM, indicating that the anisotropy is eliminated. However, the dual aging and deformation plus aging treated specimens are demonstrated by large anisotropy.
基金This project is supported by Foundation of National Defense Technology Key Laboratory, China (No.99JS50.3.2JW1402).
文摘The distributions of temperature and residual stresses in thin plates of BT20titanium alloy are numerically analyzed by three-dimensional finite element software duringelectron beam welding and electron beam local post-weld heat treatment (EBLPWHT). Combined withnumerical calculating results, the effects of different EBLPWHT mode and parameters, including heattreating position, heating width and heating time, on the distribution of welding residual stressesare analyzed. The results show that, the residual tensile stresses in weld center can be largelydecreased when the weld is heat treated at back preface of the plate. The numerical results alsoindicated that the magnitude of the residual longitudinal stresses of the weld and the zone vicinityof the weld is decreased, and the range of the residual longitudinal stresses is increased alongwith the increase of heating width and heating time.
文摘The hardness and residual stress in the forging for cold roller during low temperature tempering,and the relationship of residual stress and cooling temperature of high temperature tempering for heavy forgings were studied.The stress relaxation constant at low temperature tempering and the elasto-plastisity inversion temperature at high temperature tempering were found.The results are of great importance to determine rational tempering cooling process of heavy forgings.
文摘Comparative investigations were carried out of the effect of heat treatment regimes Jor steel GC-4(40CrMnSiMoVA)on its crack propagating rates,from corrosion fatigue, (da/dN)_(CF),or stress corrosion cracking,(da/dt)_(SCC),in media with various constituents and pH values.Both(da/dN)_(CF) and(da/dt)_(SCC) accelerate with the increase of yield stress of the steel,yet the former is far less than the later.In comparison with media,the (da/dt)_(SCC) in distilled water is slightly greater than that in 3.5% NaCl solution,and the (da/dN)_(CF) in distilled water is far less than that in 3.5% NaCl solution.With the pH value increasing in 3.5% NaCl solution,the(da/dN)_(CF) lowers down and the(da/dt)_(SCC) speeds up.An explanation was also proposed with concept of the cyclic hardening and softening at crack tip,as well as the crack closure and occluded cell effect.
文摘Significant compressive stress may be induced in thin plate weldment by anti-welding heating treatment (AWHT) with a temperature difference above 350℃, and an interesting phenomenon of obvious residual stress reduction on non-treated surface was discovered. The method of AWHT has no great effect on the mechanical properties including hardness, strength and toughness of the metal material. The results in the paper prompt a possibility application in shipbuilding industry.
文摘The effects of stepped solution heat treatments on the dissolution of soluble remnant constituents and mechanical properties of 7055 aluminum alloy were investigated. It was shown that a suitable pretreatment at lower temperature can enable complete dissolution of the constituent particles in 7055 alloy without overheating by subsequent high temperature solution treatment. This in turn increased the tensile strength and fracture toughness of 7055 alloy to 805 MPa and 41.5 MPa·m 1/2 respectively, with approximately 9% tensile elongation. The near solvus pre precipitation following after high temperature solution treatment was also studied on 7055 aluminum alloy. The effect of the pre precipitation on the microstructure, age hardening and stress corrosion cracking of 7055 alloy was investigated. The optical and transimission electron microscopy observation show that the near solvus pre precipitation can be limited to grain boundary and enhance the discontinuity of grain boundary precipitates in the subsequent ageing. The stress corrosion cracking resistance of aged 7055 alloy can be improved via the pre precipitation with non deteriorated strength and plasticity.
文摘Local postweld heat treatment (PWHT)is usually performed when it is impractical to heat treat the whole vessel in a furnace, Many factors have an influence on PWHT procedures, such as size of the pipe,heated widths, insulation conditions, heating rates soak temperatures and hold times, material composition etc,. However up to now the influences these factors have on PWHT are not very clearly understood and different criteria for sizing the parameters can be found in different codes. This study provides a direct method to assess the effectiveness of local PWHT.An axisymmetrical model was used based on the thermal-visco-elastic-plastic Finite Element Method with the consideration of creep phenomena. By using this method both temperature and stress distributions can be simulated during whole local PWHT history. The computation results of temperature distributions and the strain histaries during local PWHT are compared with the experiments, and good agreements are obtained, Investigations show that the thermal stresses induced by local PWHT are much affected by creep behavior and the changes of Young's Modulus. The study of stress relief history shows that the stresses decrease quickly in the heating stage, then decrease slowly according to creep law in the hold stage and then studdenly increase when the cooling stage starts. The study shows the possibility that through a series of computations the effects of many factors can be assessed and the optimum parnmeters can be found. Compared with the heated widths based apon some applicable codes, it is found that a heated area of 2.5 on either side of the weld seems more reasonable.
文摘In this paper, mathematical models and FEA formulation for implementing heat treatment process simulation were given out. The various coupling effects were treated. The object-oriented methodology of developing heat treatment simulation was explored. The framework of simulating programs was outlined. The main C++ classes were developed, some important member functions were implemented. The present research work shows that using object-oriented method can greatly reduce the amount of coding. The programs are clear in conception, easy to test, modify and expand. By using the methodology introduced in this paper, one heat treatment process three dimensional simulation tool was developed.
文摘X-ray diffraction was utilized to measure the residual stress of 45 mm UNS N08810 plates after post-weld heat treatment at temperatures of 680℃ and 900℃, which showed reductions of 86.9% and 71.6% in the residual stress, respectively. This indicates that post-weld heat treatment can play a significant role in reducing residual stress, while no significant effects on tensile stress and micro-hardness of the welding joint were observed after treatment.
文摘The plan of heat-treatment process for 2014Al alloy is designed using orthogonal method, the heat-treatment experiments are made and the mechanical properties are tested according to the designed plan. The effect of solid solution temperature, ageing temperature, ageing time on microscopic mechanism of the mechanical properties of the 2014Al alloy is studied using microscope, transmission electron microscope. The best heat treatment process of the 2014Al alloy is developed. The experimental results indicate that the strength σ<sub>b</sub>, yield stress σ<sub>0.2</sub>, percentage elongation δ of the alloy reach separately 490~500 MPa, 450~490 MPa, 10~12% adopting the new heat treatment process. Compared with GB, the strength increases 20~30%, the percentage elongation increases 30~40%. The mechanism of the new heat-treatment process is also discussed.
基金supported by the National Science and Technology Infrastructure Platforms Construction Projects of China (No.2005DKA 10400)the Major Fund in the Tenth Five-Year Development Plan of China (No.50499333-08)
文摘In order to investigate stress corrosion cracking (SCC) of X70 pipeline steel and its weld joint area in acidic soil environ- ment in China, two simulating methods were used: one was to obtain bad microstructures in heat affected zone by annealing at 1300 ℃ for 10 min and then, quenching in water; the other was to get different simulating solutions of acidic soil in Yingtan in south- east China. The SCC susceptibilities of X70 pipeline steel before and after quenching in the simulating solutions were analyzed using slow stain rate test (SSRT) and potentiodynamic polarization technique to investigate the SCC electrochemical mechanism of different microstructures further. The results show that SCC appears in the original microstructure and the quenched microstructure as the polarization potential decreases. Hydrogen revolution accelerates SCC of the two tested materials within the range of-850 mV to -1200 mV vs. SCE. Microstructural hardening and grain coarsening also increase SCC. The SCC mechanisms are different, anodic dissolution is the key of causing SCC as the polarization potential is higher than the null current potential, and hydrogen embrittlement will play a more important role to SCC as the polarization potential lower than the null current potential.
文摘The effects of two-stage aging and retrogression and reaging heat treatment on the fracture toughness and stress corrosion cracking resistance of 7475 alloy were studied. The fracture toughness, conductivity and strength of samples of nine groups under duplex aging conditions and three retrogression and reaging heat treatments were also measured. Incorporating the microstructure and property, we found that when the condition of the first order aging kept identical, the fracture toughness and stress corrosion cracking resistance increase with aging time and the second aging temperature. The optimal treatment conditions are ( 115℃×7h + 185 ℃×13h) among all tested two-stage aging treatments. Although the 7475 alloy treated by RRA method shows the highest strength and its stress corrosion cracking resistance after twenty minutes retrogression can also reach the same level as those by the optimal treatment of (115℃×7h+ 185℃×13h ), the fracture toughness is even low.
文摘The influence of different cooling during heat treatment on microstructure and stress rupture property of DZ951 alloy was investigated by optical microscope, SEM and TEM. The results show that the shape of MC carbide changes from Chinese script in as-cast alloy to small block with different cooling ways. The size of γ′ phase decreases and the shape of γ′ phase changes from cuboid to sphere with the increase of cooling rate. The γ′ phase splits into eight small cuboids when the alloy is cooled by furnace cooling. The stress rupture life of the samples by air cooling is superior to that by other cooling way.
文摘This paper dealt with the influence of residual stress on the dimensional instability of 7075 aluminum cone-shaped shells. Finite element method was introduced to calculate residual stress distributions in 7075 aluminum cone-shaped shells during conventional heat treatment (CHT) and deep cryogenic treatment (DCT). An example was given to demonstrate effects of deep cryogenic treatment (DCT) and conventional heat treatment (CHT) on dimensional instability. It is concluded that initial residual stresses have detrimental influence on the dimensional instability of 7075 aluminum cone-shaped shells.
基金The authors acknowledge the financial support of the National Science and Technology Support Program of China (2009BAF44 BO0) and Research Fund for the Doctoral Program of Higher Education of China (20100201110065) and National Natural Science Foundation of China ( 51375370 ).
文摘The objective of this study is to investigate the influence of post weld heat treatment (PWHT) on the distribution of residual stress in welded pipes with large thickness. The detailed pass-by-pass finite element simulation was developed to study the residual stress in narrow gap multipass welding of pipes with a wall thickness of 150 mm and 89 weld beads. The effect of PWHT on welding residual stress was also investigated by means of numerical analysis. The simulated results show that the hoop stress is tensile stress in the weld region and compressive stress in the parent metal areas adjacent to weld seam. After heat treatment, the residual stresses decrease substantially, and the simulated residual stress is validated by the experimental one. The distribution of the through-wall axial residual stress along the weld center line is a self-equilibrating type.
文摘Selective Laser Melting (SLM) shows a big potential among metal additive manufacturing (AM) technologies. However, the large thermal gradients and the local melting and solidification processes of SLM result in the presence of a significant amount of residual stresses in the as built parts. These internal stresses will not only affect mechanical properties, but also increase the risk of Stress Corrosion Cracking (SCC). A twister used in an air extraction pump of a condenser to create a swirl in the water, was chosen as a candidate component to be produced by SLM in 316 L stainless steel. Since the main expected damage mechanism of this component in service is corrosion, corrosion tests were carried out on an as-built twister as well as on heat treated components. It was shown that a low temperature heat treatment at 450℃ had only a limited effect on the residual stress reduction and concomitant corrosion properties, while the internal stresses were significantly reduced when a high temperature heat treatment at 950℃ was applied. Furthermore, a specific stress corrosion sensitivity test proved to be a useful tool to evaluate the internal stress distribution in a specific component.