Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised o...Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised on the applicability of these equations in different parts of the globe. This study was initiated to tackle these problems and also check the most suited mathematical models for the Law Heating Value of Cameroonian bagasse. Data and bagasse samples were collected at the Cameroonian sugarcane factory. The effects of cane variety, age of harvesting, source, moisture content, and sucrose on the LHV of Cameroon bagasse have been tested. It was shown that humidity does not change within a variety, but changes from the dry season to the rainy season;the sugar in the rainy season is significantly different from that collected in the dry season. Samples of the same variety have identical LHV. LHV in the dry season is significantly different from LHV in the rainy season. According to the fact that this study was done for cane with different ages of harvesting, the maturity of Cameroonian sugarcane does not affect LHV of bagasse. Tree selected models are much superior tool for the prediction of the LHV for bagasse in Cameroon compared to others. The standard deviation of these validated models is around 200 kJ/kg compared to the experimental. Thus, the models determined in foreign countries, are not necessarily applicable in predicting the LHV of bagasse in other countries with the same accuracy as that in their native country. There was linear relationship between humidity, ash and sugar content in the bagasse. It is possible to build models based on data from physical composition of bagasse using regression analysis.展开更多
The calculation of heat and humidity load serves as the cornerstone of Heating,Ventilation,and Air Conditioning(HVAC)design.Nevertheless,as the heat and humidity load characteristics of underground structures differ s...The calculation of heat and humidity load serves as the cornerstone of Heating,Ventilation,and Air Conditioning(HVAC)design.Nevertheless,as the heat and humidity load characteristics of underground structures differ substantially from those of above-ground structures,it is a challenge to derive their accurate calculation procedure through engineering experience.Therefore,it is particularly important to carry out quantitative research on heat and humidity load.This study used Design Builder software to study the influence of the design state point of air conditioning in underground buildings on energy consumption.The study showed that compared with the single design temperature of 18℃,setting the temperature of 16℃ in winter and 22℃ in summer could reduce energy consumption by about 59%.And the hourly heat load,cooling load and humidity load in one year are simulated and calculated so as to quantitatively analyze the characteristics of the load.This provides a database for selecting suitable HVAC equipment.It is further emphasized that dehumidification is the key to HVAC design of underground structures,which provides a reference for similar engineering designs.展开更多
In this paper,the protective performance of woven fab-rics against heat radiation is studied from the view offabric structure.As indices reflecting the protective per-formance against heat radiation,the heat emissivit...In this paper,the protective performance of woven fab-rics against heat radiation is studied from the view offabric structure.As indices reflecting the protective per-formance against heat radiation,the heat emissivity andthe transmissivity of different fabrics are measured.It ispointed out that structure changes of common textiles af-fect their transmission to heat radiation while have littleinfluence on their absorption or reflection to heat radi-ation except fabrics surfaces are aluminized.Double-layer weave is proved to be an effective fabric weave forreducing the trasmissivity.It helps increase the densityand tightness while keeps the comfort of woven fabrics atthe same time.展开更多
The processes of heat and humidity transfer between air and water are what to be studied mainly in the paper, we put forward some main factors which influence the processes of heat and humidity transfer in the air was...The processes of heat and humidity transfer between air and water are what to be studied mainly in the paper, we put forward some main factors which influence the processes of heat and humidity transfer in the air washer. We come to the conclusion that we can change these main factors to achieve different heat and humidity transfer processes and decide processes of heat and humidity transfer of air and water with the initial temperature of spraying water in the air washer. All these results can make things convenient for the air conditioning management.展开更多
It is proven that the law of radiation from solid bodies, Stefan-Boltzmann law shall not be used to calculate heat radiation from gas volumes which are formed in fuel flaring. The determining influence on heat fluxes ...It is proven that the law of radiation from solid bodies, Stefan-Boltzmann law shall not be used to calculate heat radiation from gas volumes which are formed in fuel flaring. The determining influence on heat fluxes density of the torch to the heating surfaces has not only a temperature, but power, dimensions, geometrical position of radiative gas volumes. The laws of radiation from gas volumes disclosed in 2001 and the method for calculating heating fluxes from gas volumes, developed on its basis, which takes into account the radiation from full set of particles in gas volume are stated. The torch model in the form of radiative gas volume is used to calculate heat transfer in torch heating furnaces, steam boiler boxes, turbogas unit combustors. The disclosure has enabled us to create new furnaces, fire boxes, combustion chambers, enhance unit performance, and decrease fuel rate, pollutant emissions.展开更多
Artificial neural network has unique advantages for massively parallel processing, distributed storage capacity and self-learning ability. The paper mainly constructs neural network identifier and neural network contr...Artificial neural network has unique advantages for massively parallel processing, distributed storage capacity and self-learning ability. The paper mainly constructs neural network identifier and neural network controller for system identification and control on temperature and hmnidity of heating and drying system of materials. And the paper introduces the structure and principles of neural network, and focuses on analyzing learning algorithm, training algorithm and limitation of the most widely applied multi-layer feed-forward neural network ( BP network) , based on which the paper proposes introducing momentum to improve BP network.展开更多
Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design pa...Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.展开更多
In order to improve the efficiency of heating and the uniformity of temperature distribution in recycling asphalt mixtures, a pyramidal radiation heater is designed. The principles of designing horn surface size and a...In order to improve the efficiency of heating and the uniformity of temperature distribution in recycling asphalt mixtures, a pyramidal radiation heater is designed. The principles of designing horn surface size and antenna length are established according to the law of energy conservation and microwave antenna radiation theory. Modeling and simulation are carried out using IE3D software. The simulation results demonstrate that, with a fixed horn surface size, the shortened electric antenna length is the main factor leading to the improved heating uniformity. On the other hand, with a fixed antenna length and diminished surface size, the standing wave ratio decreases with the improved radiation efficiency. Furthermore, the efficiency of radiation drops with increased distance between the horn surface and the asphalt pavement. Microwave heating experiments are carried out using this type of heater. The temperature distribution of asphalt samples is obtained by the grid temperature measurement method, and Matlab simulation is performed. The experimental results are in good agreement with the simulation.展开更多
Coupled natural convection and surface radiation within a square cavity, filled with air and submitted to discrete heating and cooling from all its walls, is studied numerically. The thermally active elements are cent...Coupled natural convection and surface radiation within a square cavity, filled with air and submitted to discrete heating and cooling from all its walls, is studied numerically. The thermally active elements are centrally located on the walls of the cavity. Two heating modes, called SB and SV, are considered. They correspond to bottom and vertical left elements sinusoidally heated in time, respectively, while the top and vertical right ones are constantly cooled. The remaining portions of all the walls are considered adiabatic. The parameters governing the problem are the amplitude and the period of the temporally sinusoidal temperature, the emissivity of the walls , the relative lengths of the active elements and the Rayleigh number . The effect of such parameters on flow and thermal fields and the resulting heat transfer is examined. It is shown that, during a flow cycle, the flow structure can present complex behavior, depending on the emissivity and the amplitude and period of the exciting temperature. The rate of heat transfer is generally enhanced in the case of sinusoidal heating. Also, the resonance phenomenon existence, characterized by maximum fluctuations in flow intensity and heat transfer, is proved in this study.展开更多
A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo meth...A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo method with the heat flux method. Its accuracy and reliability was proved by comparing the computational results with exact results from classical "Zone Method".展开更多
In this study, we consider the heat-induced withdrawal reflex caused by exposure to an electromagnetic beam. We propose a concise dose-response relation for predicting the occurrence of withdrawal reflex from a given ...In this study, we consider the heat-induced withdrawal reflex caused by exposure to an electromagnetic beam. We propose a concise dose-response relation for predicting the occurrence of withdrawal reflex from a given spatial temperature profile. Our model is distilled from sub-step components in the ADT CHEETEH-E model developed at the Institute for Defense Analyses. Our model has only two parameters: the activation temperature of nociceptors and the critical threshold on the activated volume. When the spatial temperature profile is measurable, the two parameters can be determined from test data. We connect this dose-response relation to a temperature evolution model for electromagnetic heating. The resulting composite model governs the process from the electromagnetic beam deposited on the skin to the binary outcome of subject’s reflex response. We carry out non-dimensionalization in the time evolution model. The temperature solution of the non-dimensional system is the product of the applied power density and a parameter-free function. The effects of physical parameters are contained in non-dimensional time and depth. Scaling the physical temperature distribution into a parameter-free function greatly simplifies the analytical solution, and helps to pinpoint the effects of beam spot area and applied power density. With this formulation, we study the theoretical behaviors of the system, including the time of reflex, effect of heat conduction, biological latency in observed reflex, energy consumption by the time of reflex, and the strategy of selecting test conditions in experiments for the purpose of inferring model parameters from test data.展开更多
The influence of daytime tropical heat stress in the summer was studied in Holstein and Jersey heifers already acclimatized to tropical environments to determine their physiological response based on body thermal patt...The influence of daytime tropical heat stress in the summer was studied in Holstein and Jersey heifers already acclimatized to tropical environments to determine their physiological response based on body thermal patterns and respiratory alterations according to psychrometric caloric indicators. Daytime psychrometric elements showed a tropical caloric potential for developing moderate to severe heat stress in dairy cattle. Body temperature and respiratory rate increased in both breeds open and pregnant (P < 0.01). Thermal body overload and respiratory works increased from 09 am to 12 md (P < 0.001);reaching and sustaining hyperthermia under the highest caloric pressure from 12 md to 03 pm. Rectal temperature increased +1.5˚C in open Holstein (OH), +1.3˚C in pregnant Holstein (PH), +0.8˚C in open jersey (OJ) and +0.8˚C in pregnant Jersey (PJ). The lowest heat stress index (HSI) was at 06 am, where OH and PH showed a HIS +2.25 and +2.30 and OJ and PJ +2.34 and +2.38. Maximum heat stress occurred at 12 md where OH averaged +3.28 and Pregnant Holsteins showed +3.85 at 03 pm. Open Jersey (OJ) showed a maximum HSI at 12 md (3.54) and PJ resulted in +3.89 at 03 pm. Open and pregnant Jersey heifers were more tolerant to heat stress based on lower body mass, insulation, feed consumption and greater relation between body surface and metabolic body size for thermolysis. Acclimatization between five and twenty-five months under tropical heat stress allowed Holstein and Jersey heifers to develop thermal tolerance. Middle thermal acclimatization lowered thermal sensitivity, hyperthermia and hyperpnea in Holstein and Jersey heifers in the morning;however, pregnant heifers in both breeds showed higher thermal alteration in the afternoon. Tropical acclimatization at low altitudes could be integrated with environmental improvements and nutritional and health management to reduce influences of severe heat stress and improve physiological comfort and welfare in Holstein and Jersey heifers in the summer. Those combined strategies will reduce daytime thermal and respiratory responses and allow growth, pregnancy and health with lower body heat overload and less hyperthermia.展开更多
The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas vo...The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas volumes and the procedure for calculating heat transfer in torch furnaces, fire boxes, and combustion chambers, elaborated on their basis. The example of heat transfer calculation in a torch furnace is given, and it is significantly non-uniform in nature. Non-uniformity of heat flux distribution on heating surfaces is given. According to the results of calculations, a new furnace is designed to decrease the non-uniformity of ingot heating, fuel rate, and increase the furnace capacity. The calculation results of the distribution of heat fluxes on the heating surfaces are given in changing torch geometric dimensions. These results are confirmed by experimental studies.展开更多
The incompressible flow of a non-Newtonian fluid with mixed convection along a stretching sheet is analyzed. The heat transfer phenomenon is discussed through thermal radiation. The effects of the melting heat transfe...The incompressible flow of a non-Newtonian fluid with mixed convection along a stretching sheet is analyzed. The heat transfer phenomenon is discussed through thermal radiation. The effects of the melting heat transfer and heat generation/absorption are also taken. Suitable transformations are utilized to attain the nonlinear ordinary differential expressions. The convergent series solutions are presented. The fluid flow, temperature, and surface heat transfer rate are examined graphically. It is observed that the velocity decreases when the relaxation time increases while increases when the retardation time is constant. The results also reveal that the temperature distribution reduces when the radiation parameter increases.展开更多
Superheater tubes temperature control is a necessity for long lifetime, high efficiency and high load following capability in boiler. This study reports a new approach for the control strategy design of boilers with s...Superheater tubes temperature control is a necessity for long lifetime, high efficiency and high load following capability in boiler. This study reports a new approach for the control strategy design of boilers with special shields. The presented control strategy is developed based on radiation thermal shields with low emissivity coefficient and high reflectivity or scattering coefficient. In order to simulate the combustion event in boiler and heat transfer to superheater tubes, an effective set of computational fluid dynamic (CFD) codes is used. Results indicate a successful identification of over- heated zones on platen superheater tubes and effect of radiation shields for solving this problem.展开更多
The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a re...The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.展开更多
This paper introduces the consistency between top of atmosphere(TOA) imbalances and ocean heat uptake,and the inconsistency between ocean heat uptake estimates and flux climatologies,and then gives some recommendation...This paper introduces the consistency between top of atmosphere(TOA) imbalances and ocean heat uptake,and the inconsistency between ocean heat uptake estimates and flux climatologies,and then gives some recommendations and outlook.展开更多
The conjugate effects of radiation and joule heating on magnetohydrodynamic (MHD) free convection flow along a sphere with heat generation have been investigated in this paper. The governing equations are transformed ...The conjugate effects of radiation and joule heating on magnetohydrodynamic (MHD) free convection flow along a sphere with heat generation have been investigated in this paper. The governing equations are transformed into dimensionless non-similar equations by using set of suitable transformations and solved numerically by the finite difference method along with Newton’s linearization approximation. Attention has been focused on the evaluation of shear stress in terms of local skin friction and rate of heat transfer in terms of local Nusselt number, velocity as well as temperature profiles. Numerical results have been shown graphically for some selected values of parameters set consisting of heat generation parameter Q, radiation parameter Rd, magnetic parameter M, joule heating parameter J and the Prandtl number Pr.展开更多
A numerical study on boundary layer flow behaviour, heat and mass transfer characteristics of a nanofluid over an exponentially stretching sheet in a porous medium is presented in this paper. The sheet is assumed to b...A numerical study on boundary layer flow behaviour, heat and mass transfer characteristics of a nanofluid over an exponentially stretching sheet in a porous medium is presented in this paper. The sheet is assumed to be permeable. The governing partial differential equations are transformed into coupled nonlinear ordinary differential equations by using suitable similarity transformations. The transformed equations are then solved numerically using the well known explicit finite difference scheme known as the Keller Box method. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and then, the results are presented in both graphical and tabular forms.展开更多
文摘Many attempts have been made to estimate calorific value of bagasse using mathematical equations, which were created based on data from proximate, ultimate, physical and chemical analysis. Questions have been raised on the applicability of these equations in different parts of the globe. This study was initiated to tackle these problems and also check the most suited mathematical models for the Law Heating Value of Cameroonian bagasse. Data and bagasse samples were collected at the Cameroonian sugarcane factory. The effects of cane variety, age of harvesting, source, moisture content, and sucrose on the LHV of Cameroon bagasse have been tested. It was shown that humidity does not change within a variety, but changes from the dry season to the rainy season;the sugar in the rainy season is significantly different from that collected in the dry season. Samples of the same variety have identical LHV. LHV in the dry season is significantly different from LHV in the rainy season. According to the fact that this study was done for cane with different ages of harvesting, the maturity of Cameroonian sugarcane does not affect LHV of bagasse. Tree selected models are much superior tool for the prediction of the LHV for bagasse in Cameroon compared to others. The standard deviation of these validated models is around 200 kJ/kg compared to the experimental. Thus, the models determined in foreign countries, are not necessarily applicable in predicting the LHV of bagasse in other countries with the same accuracy as that in their native country. There was linear relationship between humidity, ash and sugar content in the bagasse. It is possible to build models based on data from physical composition of bagasse using regression analysis.
基金funded by theResearch Project of ChinaNorthwest Architecture Design and Research Institute Co.,Ltd.,“Simulation of Building Energy Consumption and Airflow Organization in Special Environment” (Grant Number:NB-2020-NT-03).
文摘The calculation of heat and humidity load serves as the cornerstone of Heating,Ventilation,and Air Conditioning(HVAC)design.Nevertheless,as the heat and humidity load characteristics of underground structures differ substantially from those of above-ground structures,it is a challenge to derive their accurate calculation procedure through engineering experience.Therefore,it is particularly important to carry out quantitative research on heat and humidity load.This study used Design Builder software to study the influence of the design state point of air conditioning in underground buildings on energy consumption.The study showed that compared with the single design temperature of 18℃,setting the temperature of 16℃ in winter and 22℃ in summer could reduce energy consumption by about 59%.And the hourly heat load,cooling load and humidity load in one year are simulated and calculated so as to quantitatively analyze the characteristics of the load.This provides a database for selecting suitable HVAC equipment.It is further emphasized that dehumidification is the key to HVAC design of underground structures,which provides a reference for similar engineering designs.
文摘In this paper,the protective performance of woven fab-rics against heat radiation is studied from the view offabric structure.As indices reflecting the protective per-formance against heat radiation,the heat emissivity andthe transmissivity of different fabrics are measured.It ispointed out that structure changes of common textiles af-fect their transmission to heat radiation while have littleinfluence on their absorption or reflection to heat radi-ation except fabrics surfaces are aluminized.Double-layer weave is proved to be an effective fabric weave forreducing the trasmissivity.It helps increase the densityand tightness while keeps the comfort of woven fabrics atthe same time.
文摘The processes of heat and humidity transfer between air and water are what to be studied mainly in the paper, we put forward some main factors which influence the processes of heat and humidity transfer in the air washer. We come to the conclusion that we can change these main factors to achieve different heat and humidity transfer processes and decide processes of heat and humidity transfer of air and water with the initial temperature of spraying water in the air washer. All these results can make things convenient for the air conditioning management.
文摘It is proven that the law of radiation from solid bodies, Stefan-Boltzmann law shall not be used to calculate heat radiation from gas volumes which are formed in fuel flaring. The determining influence on heat fluxes density of the torch to the heating surfaces has not only a temperature, but power, dimensions, geometrical position of radiative gas volumes. The laws of radiation from gas volumes disclosed in 2001 and the method for calculating heating fluxes from gas volumes, developed on its basis, which takes into account the radiation from full set of particles in gas volume are stated. The torch model in the form of radiative gas volume is used to calculate heat transfer in torch heating furnaces, steam boiler boxes, turbogas unit combustors. The disclosure has enabled us to create new furnaces, fire boxes, combustion chambers, enhance unit performance, and decrease fuel rate, pollutant emissions.
文摘Artificial neural network has unique advantages for massively parallel processing, distributed storage capacity and self-learning ability. The paper mainly constructs neural network identifier and neural network controller for system identification and control on temperature and hmnidity of heating and drying system of materials. And the paper introduces the structure and principles of neural network, and focuses on analyzing learning algorithm, training algorithm and limitation of the most widely applied multi-layer feed-forward neural network ( BP network) , based on which the paper proposes introducing momentum to improve BP network.
基金the National Key Research and Development Program of China[grant number 2022YFF0801303]the National Natural Science Foundation of China[grant numbers 41991284 and 42075021].
基金supported by the Second Stage of Brain Korea 21 Projects
文摘Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.
基金The Key Project of Science and Technology of Ministry of Education(No.03081,105085)the SciTech Achievements Transformation Program of Jiangsu Province(No.BA2006068)
文摘In order to improve the efficiency of heating and the uniformity of temperature distribution in recycling asphalt mixtures, a pyramidal radiation heater is designed. The principles of designing horn surface size and antenna length are established according to the law of energy conservation and microwave antenna radiation theory. Modeling and simulation are carried out using IE3D software. The simulation results demonstrate that, with a fixed horn surface size, the shortened electric antenna length is the main factor leading to the improved heating uniformity. On the other hand, with a fixed antenna length and diminished surface size, the standing wave ratio decreases with the improved radiation efficiency. Furthermore, the efficiency of radiation drops with increased distance between the horn surface and the asphalt pavement. Microwave heating experiments are carried out using this type of heater. The temperature distribution of asphalt samples is obtained by the grid temperature measurement method, and Matlab simulation is performed. The experimental results are in good agreement with the simulation.
文摘Coupled natural convection and surface radiation within a square cavity, filled with air and submitted to discrete heating and cooling from all its walls, is studied numerically. The thermally active elements are centrally located on the walls of the cavity. Two heating modes, called SB and SV, are considered. They correspond to bottom and vertical left elements sinusoidally heated in time, respectively, while the top and vertical right ones are constantly cooled. The remaining portions of all the walls are considered adiabatic. The parameters governing the problem are the amplitude and the period of the temporally sinusoidal temperature, the emissivity of the walls , the relative lengths of the active elements and the Rayleigh number . The effect of such parameters on flow and thermal fields and the resulting heat transfer is examined. It is shown that, during a flow cycle, the flow structure can present complex behavior, depending on the emissivity and the amplitude and period of the exciting temperature. The rate of heat transfer is generally enhanced in the case of sinusoidal heating. Also, the resonance phenomenon existence, characterized by maximum fluctuations in flow intensity and heat transfer, is proved in this study.
基金financially supported by the National Natural Science Foundation of China (No.50464004)
文摘A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo method with the heat flux method. Its accuracy and reliability was proved by comparing the computational results with exact results from classical "Zone Method".
文摘In this study, we consider the heat-induced withdrawal reflex caused by exposure to an electromagnetic beam. We propose a concise dose-response relation for predicting the occurrence of withdrawal reflex from a given spatial temperature profile. Our model is distilled from sub-step components in the ADT CHEETEH-E model developed at the Institute for Defense Analyses. Our model has only two parameters: the activation temperature of nociceptors and the critical threshold on the activated volume. When the spatial temperature profile is measurable, the two parameters can be determined from test data. We connect this dose-response relation to a temperature evolution model for electromagnetic heating. The resulting composite model governs the process from the electromagnetic beam deposited on the skin to the binary outcome of subject’s reflex response. We carry out non-dimensionalization in the time evolution model. The temperature solution of the non-dimensional system is the product of the applied power density and a parameter-free function. The effects of physical parameters are contained in non-dimensional time and depth. Scaling the physical temperature distribution into a parameter-free function greatly simplifies the analytical solution, and helps to pinpoint the effects of beam spot area and applied power density. With this formulation, we study the theoretical behaviors of the system, including the time of reflex, effect of heat conduction, biological latency in observed reflex, energy consumption by the time of reflex, and the strategy of selecting test conditions in experiments for the purpose of inferring model parameters from test data.
文摘The influence of daytime tropical heat stress in the summer was studied in Holstein and Jersey heifers already acclimatized to tropical environments to determine their physiological response based on body thermal patterns and respiratory alterations according to psychrometric caloric indicators. Daytime psychrometric elements showed a tropical caloric potential for developing moderate to severe heat stress in dairy cattle. Body temperature and respiratory rate increased in both breeds open and pregnant (P < 0.01). Thermal body overload and respiratory works increased from 09 am to 12 md (P < 0.001);reaching and sustaining hyperthermia under the highest caloric pressure from 12 md to 03 pm. Rectal temperature increased +1.5˚C in open Holstein (OH), +1.3˚C in pregnant Holstein (PH), +0.8˚C in open jersey (OJ) and +0.8˚C in pregnant Jersey (PJ). The lowest heat stress index (HSI) was at 06 am, where OH and PH showed a HIS +2.25 and +2.30 and OJ and PJ +2.34 and +2.38. Maximum heat stress occurred at 12 md where OH averaged +3.28 and Pregnant Holsteins showed +3.85 at 03 pm. Open Jersey (OJ) showed a maximum HSI at 12 md (3.54) and PJ resulted in +3.89 at 03 pm. Open and pregnant Jersey heifers were more tolerant to heat stress based on lower body mass, insulation, feed consumption and greater relation between body surface and metabolic body size for thermolysis. Acclimatization between five and twenty-five months under tropical heat stress allowed Holstein and Jersey heifers to develop thermal tolerance. Middle thermal acclimatization lowered thermal sensitivity, hyperthermia and hyperpnea in Holstein and Jersey heifers in the morning;however, pregnant heifers in both breeds showed higher thermal alteration in the afternoon. Tropical acclimatization at low altitudes could be integrated with environmental improvements and nutritional and health management to reduce influences of severe heat stress and improve physiological comfort and welfare in Holstein and Jersey heifers in the summer. Those combined strategies will reduce daytime thermal and respiratory responses and allow growth, pregnancy and health with lower body heat overload and less hyperthermia.
文摘The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas volumes and the procedure for calculating heat transfer in torch furnaces, fire boxes, and combustion chambers, elaborated on their basis. The example of heat transfer calculation in a torch furnace is given, and it is significantly non-uniform in nature. Non-uniformity of heat flux distribution on heating surfaces is given. According to the results of calculations, a new furnace is designed to decrease the non-uniformity of ingot heating, fuel rate, and increase the furnace capacity. The calculation results of the distribution of heat fluxes on the heating surfaces are given in changing torch geometric dimensions. These results are confirmed by experimental studies.
文摘The incompressible flow of a non-Newtonian fluid with mixed convection along a stretching sheet is analyzed. The heat transfer phenomenon is discussed through thermal radiation. The effects of the melting heat transfer and heat generation/absorption are also taken. Suitable transformations are utilized to attain the nonlinear ordinary differential expressions. The convergent series solutions are presented. The fluid flow, temperature, and surface heat transfer rate are examined graphically. It is observed that the velocity decreases when the relaxation time increases while increases when the retardation time is constant. The results also reveal that the temperature distribution reduces when the radiation parameter increases.
文摘Superheater tubes temperature control is a necessity for long lifetime, high efficiency and high load following capability in boiler. This study reports a new approach for the control strategy design of boilers with special shields. The presented control strategy is developed based on radiation thermal shields with low emissivity coefficient and high reflectivity or scattering coefficient. In order to simulate the combustion event in boiler and heat transfer to superheater tubes, an effective set of computational fluid dynamic (CFD) codes is used. Results indicate a successful identification of over- heated zones on platen superheater tubes and effect of radiation shields for solving this problem.
文摘The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.
文摘This paper introduces the consistency between top of atmosphere(TOA) imbalances and ocean heat uptake,and the inconsistency between ocean heat uptake estimates and flux climatologies,and then gives some recommendations and outlook.
文摘The conjugate effects of radiation and joule heating on magnetohydrodynamic (MHD) free convection flow along a sphere with heat generation have been investigated in this paper. The governing equations are transformed into dimensionless non-similar equations by using set of suitable transformations and solved numerically by the finite difference method along with Newton’s linearization approximation. Attention has been focused on the evaluation of shear stress in terms of local skin friction and rate of heat transfer in terms of local Nusselt number, velocity as well as temperature profiles. Numerical results have been shown graphically for some selected values of parameters set consisting of heat generation parameter Q, radiation parameter Rd, magnetic parameter M, joule heating parameter J and the Prandtl number Pr.
文摘A numerical study on boundary layer flow behaviour, heat and mass transfer characteristics of a nanofluid over an exponentially stretching sheet in a porous medium is presented in this paper. The sheet is assumed to be permeable. The governing partial differential equations are transformed into coupled nonlinear ordinary differential equations by using suitable similarity transformations. The transformed equations are then solved numerically using the well known explicit finite difference scheme known as the Keller Box method. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and then, the results are presented in both graphical and tabular forms.