The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p...The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.展开更多
The performance of a 270 MW (9 × 30 MW) AES Corporation barge mounted gas turbine power plant in Nigeria is evaluated using the heat rate and entropy generation by the components of the plant to characterize the ...The performance of a 270 MW (9 × 30 MW) AES Corporation barge mounted gas turbine power plant in Nigeria is evaluated using the heat rate and entropy generation by the components of the plant to characterize the irreversibility in each component when operating at different loads between 90% and 25%. The power plants have the peculiarity that three of the plants were supplied by three (3) different Original Equipment Manufacturers (OEM);A, B and C. This study is sequel to the fact that the gas turbines were the first independent power plants in the country and after more than fifteen years of operation, it is reasonable to evaluate the performance of the major components. By analyzing the thermodynamic performance of these components, the study demonstrates the utility value of exergy efficiency as an important parameter in the evaluation of major components in a gas power plant. Exergy efficiency is shown to be an important parameter in ranking the power plant components, identifying and quantifying the possible areas of reduction in thermodynamic losses and improvement in efficiencies. A new relationship is derived to demonstrate the correlation between the exergy efficiency and the heat rate of a 30 MW gas power plant. The prediction of the derived relationship correlates well with the observed operational performance of the 30 MW power plants. The combustion chamber in each of the plants provides the maximum exergy destruction during operation. Its exergy efficiency is shown to exhibit good correlation with its energy efficiency and the plant rational exergy. The implication is that from an operational and component selection viewpoint in the specifications of a gas power plant, knowledge of the Heat Rate which is usually provided by the OEM is adequate to make a reasonable inference on the performance of some critical components of the plant.展开更多
Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the ste...Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the steam cycle which in turn generates electricity from the generator connected to the steam turbine. In addition, heat from the process is supplied to a district heating system. The heat can be extracted from the system in a number of ways, by using a back-pressure steam turbine, an extraction steam turbine or by extracting heat directly from the boiler. The objective of the paper is the design, modeling and simulation of such CHP plant. The plant should be sized for providing electric-ity and heat for the Anticosti Island community in Quebec.展开更多
Electric furnace short process steelmaking is one of the most important steelmaking methods in the world today, and the waste heat recovery potential of electric furnace flue gas is huge.?The research on the recovery ...Electric furnace short process steelmaking is one of the most important steelmaking methods in the world today, and the waste heat recovery potential of electric furnace flue gas is huge.?The research on the recovery of electric furnace flue gas waste heat is of great significance. In order to make better use of this part of the heat,?in this paper, a compound cycle of nitrogen Brayton cycle as a first-order cycle and toluene transcritical Rankine cycle as a second-order cycle is proposed to recover waste heat from furnace flue gas in steelmaking process for power generation. A mathematical model was established with the net output power as the objective function and the initial expansion pressure, the final expansion pressure, the initial expansion temperature and the initial pressure of the second cycle as the independent variables. The effect of multivariate on the net output power of the waste heat power generation cycle is studied, and then, the optimal parameters of the compound cycle are determined. The results show that under the general electric furnace steelmaking process, the power generation efficiency of this new cycle can be increased by 21.02% compared with the conventional cycle.展开更多
This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion p...This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.展开更多
Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. St...Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW.展开更多
Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,nume...Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,numerical simulations are conducted on a cylindrical coolant channel and its surrounding solid regions.Validated numerical methods are used to determine the effect and mechanisms of power and its distribution,inlet temperature and velocity,and outlet pressure on the distribution and change trend of the axial Nusselt number.Furthermore,a theoretical framework that can describe the effect of power variation on the evolution of the thermal boundary layer is employed to formulate an axial distribution cor-relation for the Nusselt number of the coolant channel,under the assumption of a cosine distribution for the axial power.Based on the simulation results,the correlation coefficients are determined,and a semi-empirical relationship is identified under the corresponding operating conditions.The correlation derived in this study is consistent with the simulations,with an average relative error of 5.3%under the operating conditions.Finally,to improve the accuracy of the predictions near the entrance,a segmented correlation is developed by combining the Kays correlation with the aforementioned correlation.The new correlation reduces the average relative error to 2.9%and maintains satisfactory accuracy throughout the entire axial range of the channel,thereby demonstrating its applicability to turbulent heat transfer calculations for helium-xenon gas mixtures within the core environment.These findings provide valuable insights into the convective heat transfer behavior of a helium-xenon gas mixture in a core environment.展开更多
This paper is focused on description of cool production in using WHR (Waste Heat Technology) Technology-a new method of centralized production of heat by using the waste heat from generated exhaust gas, which has be...This paper is focused on description of cool production in using WHR (Waste Heat Technology) Technology-a new method of centralized production of heat by using the waste heat from generated exhaust gas, which has been in 2009 developed and operated by companies HELORO s.r.o, and COMTHERM s.r.o.展开更多
Internal combustion engine-based poly-generation systems have been widely used for energy savings and emissions reductions.To maximize their thermodynamic and environmental performance potentials,the efficient recover...Internal combustion engine-based poly-generation systems have been widely used for energy savings and emissions reductions.To maximize their thermodynamic and environmental performance potentials,the efficient recovery of flue gas and jacket water heat is essential.In a conventional internal combustion engine-based steam and power cogeneration system,the low-temperature(less than 170°C)heat from flue gas and jacket water is usually directly discharged to the environment,which dramatically reduces the thermal and economic performance.In this work,a high-temperature heat pump is employed to recover this part of low-temperature heat for steam generation.The sensible heat of the flue gas and jacket water is cascade utilized in a steam generator and a heat pump.Simulation results show that the process steam yield of the proposed system is almost doubled(increased by 703 kg/h)compared to that of an engine-based cogeneration system without a heat pump.The proposed system can reduce natural gas consumption,C 02 and NOx emissions by approximately 199069 m3,372.64 tons and 3.02 tons per year,respectively,with a primary energy ratio and exergy efficiency of 72.52%and 46.28%,respectively.Moreover,the proposed system has a lower payback period with a value of 5.11 years,and the determining factors that affect the payback period are natural gas and electricity prices.The total net present value of the proposed system within its lifespan is 2441581 USD,and an extra profit of 785748 USD can be obtained compared to the reference system.This is a promising approach for replacing gas boilers for process steam production in industrial sectors.展开更多
Cogeneration units which produce both heat and electric power are found in many process industries. These industries also consume heat directly in addition to electricity. The cogeneration units operate only within a ...Cogeneration units which produce both heat and electric power are found in many process industries. These industries also consume heat directly in addition to electricity. The cogeneration units operate only within a feasible zone. Each point within the feasible zone consists of a specific value of heat and electric power. These units are used along with other units which produce either heat or power exclusively. Hence the economic dispatch problem for these plants optimizing the fuel cost is quite complex and several classical and meta-heuristic algo- rithms have been proposed earlier. This paper applies the invasive weed optimization algorithm which is inspired by the ecological process of weed colonization and distribu- tion. The results obtained have been compared with those obtained by other methods earlier and showed a marked improvement over earlier ones.展开更多
In recent years, the increasing penetration level of renewable generation and combined heat and power(CHP) technology in power systems is leading to significant changes in energy production and consumption patterns. A...In recent years, the increasing penetration level of renewable generation and combined heat and power(CHP) technology in power systems is leading to significant changes in energy production and consumption patterns. As a result, the integrated planning and optimal operation of a multi-carrier energy(MCE) system have aroused widespread concern for reasonable utilization of multiple energy resources and efficient accommodation of renewable energy sources. In this context, an integrated demand response(IDR) scheme is designed to coordinate the operation of power to gas(P2 G) devices, heat pumps,diversified storage devices and flexible loads within an extended modeling framework of energy hubs. Subsequently, the optimal dispatch of interconnected electricity,natural gas and heat systems is implemented considering the interactions among multiple energy carriers by utilizing the bi-level optimization method. Finally, the proposed method is demonstrated with a 4-bus multi-energy systemand a larger test case comprised of a revised IEEE 118-bus power system and a 20-bus Belgian natural gas system.展开更多
Preparation of ceramsite from solid waste based on the sintering process is a new technology and had a high efficiency in improving producing capability, decreasing consumption of liquefied petroleum gas (LPG), and re...Preparation of ceramsite from solid waste based on the sintering process is a new technology and had a high efficiency in improving producing capability, decreasing consumption of liquefied petroleum gas (LPG), and recovering waste heat of flue gas. An experiment sintering gangue ceramsite was conducted in a 25 kg scale sintering pot with a 100 cm height. The combustion characteristics, phase transformation, and the release profile of SO_(2)^(*) (SO and/or SO_(2)) and NO_(x)^(*) (N_(2)O, NO, and/or NO_(2)) of gangue ceramsite during the sintering process were studied by X-ray diffraction analysis, X-ray fluorescence spectrometry, thermogravimetry–differential thermogravimetry–differential scanning calorimetry, and measurement of physical properties of ceramsite and gas components of flue gas. The results showed that the gangue ceramsite had excellent properties, and its compressive strength and water absorption were 8.2–9.6 MPa and 8.9%–9.8%, respectively, far exceeding the requirement of standard (GB/T 17431.1–2010). The ignition temperature of gangue ceramsite was 443 ℃, and the ignition loss was 14.60 mass% at 1000 ℃. Kaolinite and calcite disappeared at 600 and 800 ℃, respectively. Albite disappeared and mullite formed at 1000 ℃. Two peaks of SO_(2)^(*) emissions emerged in the range of 311–346 mg m^(-3) near 500 ℃ of upper layer ceramsite and 420–489 mg m^(-3) near 1000 ℃ of lower layer ceramsite, respectively. NO_(x)^(*) emissions peak emerged in the range of 227–258 mg m^(-3) near 550 ℃ of the upper layer ceramsite, which was related to the oxidation of sulfide and the combustion of LPG. Gangue is a direct heat source for sintering of ceramsite as well. During sintering process, the heat of flue gas above and below 400 ℃ accounts for 55.9% and 30.0% of the all-output heat, respectively, and was potentially used for producing waste-heat steam or electricity as by-products and drying raw materials during its own initial sintering process, which can realize combined mass and heat utilization for the gangue and further reduce the cost of sintered gangue ceramsite.展开更多
Fuel poverty is most prevalent in North East England with 14.4%of fuel poor households in Newcastle upon Tyne.The aim of this paper was to identify a grid connected renewable energy system coupled with natural gas rec...Fuel poverty is most prevalent in North East England with 14.4%of fuel poor households in Newcastle upon Tyne.The aim of this paper was to identify a grid connected renewable energy system coupled with natural gas reciprocating combined heat and power unit,that is cost-effective and technically feasible with a potential to generate a profit from selling energy excess to the grid to help alleviate fuel poverty.The system was also aimed at low carbon emissions.Fourteen models were designed and optimized with the aid of the HOMER Pro software.Models were compared with respect to their economic,technical,and environmental performance.A solution was proposed where restrictions were placed on the size of renewable energy components.This configuration consists of 150 kW CHP,300 kW PV cells,and 30 kW wind turbines.The renewable fraction is 5.10%and the system yields a carbon saving of 7.9%in comparison with conventional systems.The initial capital investment is$1.24 million which enables the system to have grid sales of 582689 kWh/a.A conservative calculation determined that 40%of the sales can be used to reduce the energy cost of fuel poor households by$706 per annum.This solution has the potential to eliminate fuel poverty at the site analyzed.展开更多
The objective of this paper is to provide the optimal choice of single-reheating or double-reheating when considering residual flue gas heat in S-CO_2 coal fired power system. The cascade utilization of flue gas energ...The objective of this paper is to provide the optimal choice of single-reheating or double-reheating when considering residual flue gas heat in S-CO_2 coal fired power system. The cascade utilization of flue gas energy includes three temperature levels, with high and low temperature ranges of flue gas heat extracted by S-CO_2 cycle and air preheater, respectively. Two methods are proposed to absorb residual flue gas heat Qre in middle temperature range. Both methods shall decrease CO_2 temperature entering the boiler T4 and increase secondary air temperature Tsec air, whose maximum value is deduced based on energy conservation in air preheater. The system is analyzed incorporating thermodynamics, boiler pressure drop and energy distribution. It is shown that at a given main vapor temperature T5, the main vapor pressure P5 can be adjusted to a value so that Qre is completely eliminated, which is called the main vapor pressure adjustment method. For this method, single-reheating is only available for higher main vapor temperatures. The power generation efficiency for single-reheating is obviously higher than double-reheating. If residual flue gas heat does exist, a flue gas heater FGC is integrated with S-CO_2 cycle, which is called the FGC method. Both single-reheating and double-reheating share similar power generation efficiency, but single-reheating creates less residual flue gas heat. We conclude that single-reheating is preferable, and the pressure adjustment method achieves obviously higher power generation efficiency than the FGC method.展开更多
The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fr...The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fresh water, demanding less expensive desalination production, especially in the regions with little or no natural fresh water. Multigeneration desalination power plants may provide solutions to these issues through advanced and efficient designs that are capable of supplying fresh water and power to remote or arid regions of the world. This paper examines the flexibility and versatility of multigeneration systems to showcase the myriad of combinations that are available to accommodate any specific application. It also proposes a specific design for a multi-stage flash desalination system that is powered directly by the exhaust gases of a natural gas micro-turbine capable of producing around 1 MW of electrical power. The performance characteristics, the fresh water produced per kW and the overall plant efficiency, are numerically investigated and compared with previous designs that were analyzed on a larger scale. It is determined that the multigeneration system can produce 56,891 gallons of fresh water per day and an estimated 4.07 tons of salt per day and that a small scale multi-generation desalting systems is feasible.展开更多
In this paper, the authors propose a cogeneration system by combining two kinds of FCs (fuel cells) for a collective housing. The good points which each FC has are applied to the cogeneration operation schedule. In ...In this paper, the authors propose a cogeneration system by combining two kinds of FCs (fuel cells) for a collective housing. The good points which each FC has are applied to the cogeneration operation schedule. In this study, some rooms interchange electric power and heat with each other for high efficiency and reduction of energy loss. The authors determine an operation schedule of FCs by multi-evaluation from viewpoints of energy cost and CO2 emissions.展开更多
New trigeneration system consists of an internal combustion engine,a power and cooling cogeneration system and an absorption heat transformer system.The exhaust gas is recovered by the power and cooling cogeneration s...New trigeneration system consists of an internal combustion engine,a power and cooling cogeneration system and an absorption heat transformer system.The exhaust gas is recovered by the power and cooling cogeneration subsystem producing the cooling and power.The jacket water is recovered by the absorption heat transformer subsystem producing lowpressure steam.The exergy performance and the energy saving performance which is evaluated by the primary energy saving ratio of the new distributed energy system are analyzed.The effects of the ratio of the output power and cooling of the power and cooling cogeneration subsystem and the generator outlet temperature of the absorption heat transformer subsystem to the primary energy saving ratio are considered.The contributions of the subsystems to the primary energy saving ratio are quantified.The maximum primary energy saving ratio of the new distributed energy system is 15.8%,which is 3.9 percentage points higher than that of the conventional distributed energy system due to the cascade utilization of the waste heat from the internal combustion engine.展开更多
A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature rang...A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature range less than 650 ℃. The purpose of this paper is to show how it can be effectively applied not only to the nuclear power but also to the fossil fired power plant. A design of 300 MWe plant has been carried out, where thermal energy of flue gas leaving a CO2 heater is utilized effectively by means of economizer and a high cycle thermal efficiency of 43.4 % has been achieved. Since the temperature and the pressure difference of the CO2 heater are very high, the structural design becomes very difficult. It is revealed that this problem can be effectively solved by introducing a double expansion turbine cycle. The component designs of the CO2 heater, the economizer, supercritical CO2 turbines, compressors and the recuperators are given and it is shown that these components have good performances and compact sizes.展开更多
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun...In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.展开更多
The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are ...The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are developed. The system configuration is described first, and then the power response and coordination strategy are presented on the basis of the electricity model. Two different thermal models are used to estimate the thermal performance of this cogeneration system, and heat management is discussed. Based on these system designs, the 60 kW PEMFC cogeneration system is analyzed in detail. The analysis results will be useful for further study and development of the system.展开更多
基金Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization(South China University of Technology)(2013A061401005)Research Fund(JMSWFW-2110-044)from Zhongshan Jiaming Electric Power Co.,Ltd.
文摘The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.
文摘The performance of a 270 MW (9 × 30 MW) AES Corporation barge mounted gas turbine power plant in Nigeria is evaluated using the heat rate and entropy generation by the components of the plant to characterize the irreversibility in each component when operating at different loads between 90% and 25%. The power plants have the peculiarity that three of the plants were supplied by three (3) different Original Equipment Manufacturers (OEM);A, B and C. This study is sequel to the fact that the gas turbines were the first independent power plants in the country and after more than fifteen years of operation, it is reasonable to evaluate the performance of the major components. By analyzing the thermodynamic performance of these components, the study demonstrates the utility value of exergy efficiency as an important parameter in the evaluation of major components in a gas power plant. Exergy efficiency is shown to be an important parameter in ranking the power plant components, identifying and quantifying the possible areas of reduction in thermodynamic losses and improvement in efficiencies. A new relationship is derived to demonstrate the correlation between the exergy efficiency and the heat rate of a 30 MW gas power plant. The prediction of the derived relationship correlates well with the observed operational performance of the 30 MW power plants. The combustion chamber in each of the plants provides the maximum exergy destruction during operation. Its exergy efficiency is shown to exhibit good correlation with its energy efficiency and the plant rational exergy. The implication is that from an operational and component selection viewpoint in the specifications of a gas power plant, knowledge of the Heat Rate which is usually provided by the OEM is adequate to make a reasonable inference on the performance of some critical components of the plant.
文摘Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the steam cycle which in turn generates electricity from the generator connected to the steam turbine. In addition, heat from the process is supplied to a district heating system. The heat can be extracted from the system in a number of ways, by using a back-pressure steam turbine, an extraction steam turbine or by extracting heat directly from the boiler. The objective of the paper is the design, modeling and simulation of such CHP plant. The plant should be sized for providing electric-ity and heat for the Anticosti Island community in Quebec.
文摘Electric furnace short process steelmaking is one of the most important steelmaking methods in the world today, and the waste heat recovery potential of electric furnace flue gas is huge.?The research on the recovery of electric furnace flue gas waste heat is of great significance. In order to make better use of this part of the heat,?in this paper, a compound cycle of nitrogen Brayton cycle as a first-order cycle and toluene transcritical Rankine cycle as a second-order cycle is proposed to recover waste heat from furnace flue gas in steelmaking process for power generation. A mathematical model was established with the net output power as the objective function and the initial expansion pressure, the final expansion pressure, the initial expansion temperature and the initial pressure of the second cycle as the independent variables. The effect of multivariate on the net output power of the waste heat power generation cycle is studied, and then, the optimal parameters of the compound cycle are determined. The results show that under the general electric furnace steelmaking process, the power generation efficiency of this new cycle can be increased by 21.02% compared with the conventional cycle.
文摘This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.
基金Supported by project of China Geological Surrey(No.GZHL20110326)
文摘Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW.
基金The work was supported by the National Key R&D Program of China(No.2020YFB1901900)the National Natural Science Foundation of China(No.12275175)+2 种基金the Special Fund for Strengthening Industry of Shanghai(No.GYQJ-2018-2-02)the Shanghai Rising Star Program(No.21QA1404200)the Ling Chuang Research Project of the China National Nuclear Corporation.
文摘Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,numerical simulations are conducted on a cylindrical coolant channel and its surrounding solid regions.Validated numerical methods are used to determine the effect and mechanisms of power and its distribution,inlet temperature and velocity,and outlet pressure on the distribution and change trend of the axial Nusselt number.Furthermore,a theoretical framework that can describe the effect of power variation on the evolution of the thermal boundary layer is employed to formulate an axial distribution cor-relation for the Nusselt number of the coolant channel,under the assumption of a cosine distribution for the axial power.Based on the simulation results,the correlation coefficients are determined,and a semi-empirical relationship is identified under the corresponding operating conditions.The correlation derived in this study is consistent with the simulations,with an average relative error of 5.3%under the operating conditions.Finally,to improve the accuracy of the predictions near the entrance,a segmented correlation is developed by combining the Kays correlation with the aforementioned correlation.The new correlation reduces the average relative error to 2.9%and maintains satisfactory accuracy throughout the entire axial range of the channel,thereby demonstrating its applicability to turbulent heat transfer calculations for helium-xenon gas mixtures within the core environment.These findings provide valuable insights into the convective heat transfer behavior of a helium-xenon gas mixture in a core environment.
文摘This paper is focused on description of cool production in using WHR (Waste Heat Technology) Technology-a new method of centralized production of heat by using the waste heat from generated exhaust gas, which has been in 2009 developed and operated by companies HELORO s.r.o, and COMTHERM s.r.o.
基金This work was supported by the National Key Research and Development Program of China(No.2016YFF0201503).
文摘Internal combustion engine-based poly-generation systems have been widely used for energy savings and emissions reductions.To maximize their thermodynamic and environmental performance potentials,the efficient recovery of flue gas and jacket water heat is essential.In a conventional internal combustion engine-based steam and power cogeneration system,the low-temperature(less than 170°C)heat from flue gas and jacket water is usually directly discharged to the environment,which dramatically reduces the thermal and economic performance.In this work,a high-temperature heat pump is employed to recover this part of low-temperature heat for steam generation.The sensible heat of the flue gas and jacket water is cascade utilized in a steam generator and a heat pump.Simulation results show that the process steam yield of the proposed system is almost doubled(increased by 703 kg/h)compared to that of an engine-based cogeneration system without a heat pump.The proposed system can reduce natural gas consumption,C 02 and NOx emissions by approximately 199069 m3,372.64 tons and 3.02 tons per year,respectively,with a primary energy ratio and exergy efficiency of 72.52%and 46.28%,respectively.Moreover,the proposed system has a lower payback period with a value of 5.11 years,and the determining factors that affect the payback period are natural gas and electricity prices.The total net present value of the proposed system within its lifespan is 2441581 USD,and an extra profit of 785748 USD can be obtained compared to the reference system.This is a promising approach for replacing gas boilers for process steam production in industrial sectors.
文摘Cogeneration units which produce both heat and electric power are found in many process industries. These industries also consume heat directly in addition to electricity. The cogeneration units operate only within a feasible zone. Each point within the feasible zone consists of a specific value of heat and electric power. These units are used along with other units which produce either heat or power exclusively. Hence the economic dispatch problem for these plants optimizing the fuel cost is quite complex and several classical and meta-heuristic algo- rithms have been proposed earlier. This paper applies the invasive weed optimization algorithm which is inspired by the ecological process of weed colonization and distribu- tion. The results obtained have been compared with those obtained by other methods earlier and showed a marked improvement over earlier ones.
文摘In recent years, the increasing penetration level of renewable generation and combined heat and power(CHP) technology in power systems is leading to significant changes in energy production and consumption patterns. As a result, the integrated planning and optimal operation of a multi-carrier energy(MCE) system have aroused widespread concern for reasonable utilization of multiple energy resources and efficient accommodation of renewable energy sources. In this context, an integrated demand response(IDR) scheme is designed to coordinate the operation of power to gas(P2 G) devices, heat pumps,diversified storage devices and flexible loads within an extended modeling framework of energy hubs. Subsequently, the optimal dispatch of interconnected electricity,natural gas and heat systems is implemented considering the interactions among multiple energy carriers by utilizing the bi-level optimization method. Finally, the proposed method is demonstrated with a 4-bus multi-energy systemand a larger test case comprised of a revised IEEE 118-bus power system and a 20-bus Belgian natural gas system.
基金support of the Shendong Buertai Colliery and Shandong ECON Energy Saving Technology Co.,Ltd on experimentssupport from the National Key R&D Program Project(Grant No.2019YFC1905705)is greatly acknowledged.
文摘Preparation of ceramsite from solid waste based on the sintering process is a new technology and had a high efficiency in improving producing capability, decreasing consumption of liquefied petroleum gas (LPG), and recovering waste heat of flue gas. An experiment sintering gangue ceramsite was conducted in a 25 kg scale sintering pot with a 100 cm height. The combustion characteristics, phase transformation, and the release profile of SO_(2)^(*) (SO and/or SO_(2)) and NO_(x)^(*) (N_(2)O, NO, and/or NO_(2)) of gangue ceramsite during the sintering process were studied by X-ray diffraction analysis, X-ray fluorescence spectrometry, thermogravimetry–differential thermogravimetry–differential scanning calorimetry, and measurement of physical properties of ceramsite and gas components of flue gas. The results showed that the gangue ceramsite had excellent properties, and its compressive strength and water absorption were 8.2–9.6 MPa and 8.9%–9.8%, respectively, far exceeding the requirement of standard (GB/T 17431.1–2010). The ignition temperature of gangue ceramsite was 443 ℃, and the ignition loss was 14.60 mass% at 1000 ℃. Kaolinite and calcite disappeared at 600 and 800 ℃, respectively. Albite disappeared and mullite formed at 1000 ℃. Two peaks of SO_(2)^(*) emissions emerged in the range of 311–346 mg m^(-3) near 500 ℃ of upper layer ceramsite and 420–489 mg m^(-3) near 1000 ℃ of lower layer ceramsite, respectively. NO_(x)^(*) emissions peak emerged in the range of 227–258 mg m^(-3) near 550 ℃ of the upper layer ceramsite, which was related to the oxidation of sulfide and the combustion of LPG. Gangue is a direct heat source for sintering of ceramsite as well. During sintering process, the heat of flue gas above and below 400 ℃ accounts for 55.9% and 30.0% of the all-output heat, respectively, and was potentially used for producing waste-heat steam or electricity as by-products and drying raw materials during its own initial sintering process, which can realize combined mass and heat utilization for the gangue and further reduce the cost of sintered gangue ceramsite.
文摘Fuel poverty is most prevalent in North East England with 14.4%of fuel poor households in Newcastle upon Tyne.The aim of this paper was to identify a grid connected renewable energy system coupled with natural gas reciprocating combined heat and power unit,that is cost-effective and technically feasible with a potential to generate a profit from selling energy excess to the grid to help alleviate fuel poverty.The system was also aimed at low carbon emissions.Fourteen models were designed and optimized with the aid of the HOMER Pro software.Models were compared with respect to their economic,technical,and environmental performance.A solution was proposed where restrictions were placed on the size of renewable energy components.This configuration consists of 150 kW CHP,300 kW PV cells,and 30 kW wind turbines.The renewable fraction is 5.10%and the system yields a carbon saving of 7.9%in comparison with conventional systems.The initial capital investment is$1.24 million which enables the system to have grid sales of 582689 kWh/a.A conservative calculation determined that 40%of the sales can be used to reduce the energy cost of fuel poor households by$706 per annum.This solution has the potential to eliminate fuel poverty at the site analyzed.
基金supported by the National Key R&D Program of China (2017YFB0601801)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (51821004)the Fundamental Research Funds for the Central Universities (2018ZD02 and 2018QN042)
文摘The objective of this paper is to provide the optimal choice of single-reheating or double-reheating when considering residual flue gas heat in S-CO_2 coal fired power system. The cascade utilization of flue gas energy includes three temperature levels, with high and low temperature ranges of flue gas heat extracted by S-CO_2 cycle and air preheater, respectively. Two methods are proposed to absorb residual flue gas heat Qre in middle temperature range. Both methods shall decrease CO_2 temperature entering the boiler T4 and increase secondary air temperature Tsec air, whose maximum value is deduced based on energy conservation in air preheater. The system is analyzed incorporating thermodynamics, boiler pressure drop and energy distribution. It is shown that at a given main vapor temperature T5, the main vapor pressure P5 can be adjusted to a value so that Qre is completely eliminated, which is called the main vapor pressure adjustment method. For this method, single-reheating is only available for higher main vapor temperatures. The power generation efficiency for single-reheating is obviously higher than double-reheating. If residual flue gas heat does exist, a flue gas heater FGC is integrated with S-CO_2 cycle, which is called the FGC method. Both single-reheating and double-reheating share similar power generation efficiency, but single-reheating creates less residual flue gas heat. We conclude that single-reheating is preferable, and the pressure adjustment method achieves obviously higher power generation efficiency than the FGC method.
文摘The demand for more efficient power generation is not only a prominent subject for environmental reasons but for economic reasons as well. Continuing growth in population contributes to more and more consumption of fresh water, demanding less expensive desalination production, especially in the regions with little or no natural fresh water. Multigeneration desalination power plants may provide solutions to these issues through advanced and efficient designs that are capable of supplying fresh water and power to remote or arid regions of the world. This paper examines the flexibility and versatility of multigeneration systems to showcase the myriad of combinations that are available to accommodate any specific application. It also proposes a specific design for a multi-stage flash desalination system that is powered directly by the exhaust gases of a natural gas micro-turbine capable of producing around 1 MW of electrical power. The performance characteristics, the fresh water produced per kW and the overall plant efficiency, are numerically investigated and compared with previous designs that were analyzed on a larger scale. It is determined that the multigeneration system can produce 56,891 gallons of fresh water per day and an estimated 4.07 tons of salt per day and that a small scale multi-generation desalting systems is feasible.
文摘In this paper, the authors propose a cogeneration system by combining two kinds of FCs (fuel cells) for a collective housing. The good points which each FC has are applied to the cogeneration operation schedule. In this study, some rooms interchange electric power and heat with each other for high efficiency and reduction of energy loss. The authors determine an operation schedule of FCs by multi-evaluation from viewpoints of energy cost and CO2 emissions.
基金This work was supported in part by the National Basic Research Program of China(No.2014CB249202)International Science&Technology Cooperation Program of China(No.S2014GR03880).
文摘New trigeneration system consists of an internal combustion engine,a power and cooling cogeneration system and an absorption heat transformer system.The exhaust gas is recovered by the power and cooling cogeneration subsystem producing the cooling and power.The jacket water is recovered by the absorption heat transformer subsystem producing lowpressure steam.The exergy performance and the energy saving performance which is evaluated by the primary energy saving ratio of the new distributed energy system are analyzed.The effects of the ratio of the output power and cooling of the power and cooling cogeneration subsystem and the generator outlet temperature of the absorption heat transformer subsystem to the primary energy saving ratio are considered.The contributions of the subsystems to the primary energy saving ratio are quantified.The maximum primary energy saving ratio of the new distributed energy system is 15.8%,which is 3.9 percentage points higher than that of the conventional distributed energy system due to the cascade utilization of the waste heat from the internal combustion engine.
文摘A supercritical CO2 gas turbine cycle can produce power at high efficiency and the gas turbine is compact compared with the steam turbine. Therefore, it is very advantageous power cycle for the medium temperature range less than 650 ℃. The purpose of this paper is to show how it can be effectively applied not only to the nuclear power but also to the fossil fired power plant. A design of 300 MWe plant has been carried out, where thermal energy of flue gas leaving a CO2 heater is utilized effectively by means of economizer and a high cycle thermal efficiency of 43.4 % has been achieved. Since the temperature and the pressure difference of the CO2 heater are very high, the structural design becomes very difficult. It is revealed that this problem can be effectively solved by introducing a double expansion turbine cycle. The component designs of the CO2 heater, the economizer, supercritical CO2 turbines, compressors and the recuperators are given and it is shown that these components have good performances and compact sizes.
基金support provided by the Nature Science Foundation of Shandong Province(ZR201709180049)the Shandong Key Research and Development Program(2019GSF109023).
文摘In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.
基金Project (No. 2002AA517020) supported by the Hi-Tech Researchand Development Program (863) of China
文摘The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are developed. The system configuration is described first, and then the power response and coordination strategy are presented on the basis of the electricity model. Two different thermal models are used to estimate the thermal performance of this cogeneration system, and heat management is discussed. Based on these system designs, the 60 kW PEMFC cogeneration system is analyzed in detail. The analysis results will be useful for further study and development of the system.