期刊文献+
共找到1,441篇文章
< 1 2 73 >
每页显示 20 50 100
Development of experimental study on coupled heat and moisture transfer in porous building envelope 被引量:2
1
作者 陈国杰 刘向伟 +2 位作者 陈友明 郭兴国 邓永强 《Journal of Central South University》 SCIE EI CAS 2012年第3期669-674,共6页
A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope.Then,a common multi-layer porous building envelope was provided,whi... A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope.Then,a common multi-layer porous building envelope was provided,which was constructed by cement mortar-red brick-cement plaster.With this kind of building envelope installed in the south wall,a well-controlled air-conditioning room was set up in Changsha,which is one of typical zones of hot and humid climate in China.And experiments were carried out to investigate the temperature and moisture distribution in multi-layer building envelope in summer,both in sunny day and rainy day.The results show that,the temperature and humidity at the interface between the brick and cement mortar are seriously affected by the changes of outdoor temperature and humidity,and the relative humidity at this interface keeps more than 80% for a long-term,which can easily trigger the growth of mould.The temperature and humidity at the interface between the brick and cement plaster change a little,and they are affected by the changes of indoor temperature and humidity.The temperature and humidity at the interface of the wall whose interior surface is affixed with a foam plastic wallpaper are generally higher than those of the wall without wallpaper.The heat transfer and moisture transfer in the envelope are coupled strongly. 展开更多
关键词 coupled heat and moisture transfer transient moisture content multi-layer porous building envelope
下载PDF
Numerical simulation and experimental validation of moisture-heat coupling for saturated frozen soils 被引量:2
2
作者 Zhi Ming Li Jian Chen +1 位作者 Kai Sun Bin Zhang 《Research in Cold and Arid Regions》 CSCD 2017年第3期250-257,共8页
In seasonally frozen regions,freezing-and-thawing action is the main cause responsible for the destruction of canals,which is closely linked to the temperature gradient and water transport.To investigate the behaviour... In seasonally frozen regions,freezing-and-thawing action is the main cause responsible for the destruction of canals,which is closely linked to the temperature gradient and water transport.To investigate the behaviour of soils under freezing-and-thawing actions,many numerical models have been established that consider the important coupling of moisture transport and temperature evolution;but they contain excessive parameters,some of which are rather difficult to determine.Based on the well-known Harlan's theory,a simple moisture-heat coupling model was recently proposed to quantify the coupled moisture-heat transport performance of soils in terms of the central temperature and porosity.The mathematical module of COMSOL Multiphysics was further employed to solve the governing equations numerically.To validate our model,a thorough experimental scheme was carried out in our lab.The measured temperature distribution was found to be consistent with the predicted results. 展开更多
关键词 saturated FROZEN soil moisture-heat coupling freezing-and-thawing action CANAL
下载PDF
Non-equilibrium thermodynamic analysis of coupled heat and moisture transfer across a membrane
3
作者 Zhijie Shen Jingchun Min 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期497-506,共10页
Non-equilibrium thermodynamics theory is used to analyze the transmembrane heat and moisture transfer process,which can be observed in a membrane-type total heat exchanger(THX).A theoretical model is developed to simu... Non-equilibrium thermodynamics theory is used to analyze the transmembrane heat and moisture transfer process,which can be observed in a membrane-type total heat exchanger(THX).A theoretical model is developed to simulate the coupled heat and mass transfer across a membrane,total coupling equations and the expressions for the four characteristic parameters including the heat transfer coefficient,molardriven heat transfer coefficient,thermal-driven mass transfer coefficient,and mass transfer coefficient are derived and provided,with the Onsager’s reciprocal relation being confirmed to verify the rationality of the model.Calculations are conducted to investigate the effects of the membrane property and air state on the coupling transport process.The results show that the four characteristic parameters directly affect the transmembrane heat and mass fluxes:the heat and mass transfer coefficients are both positive,meaning that the temperature difference has a positive contribution to the heat transfer and the humidity ratio difference has a positive contribution to the mass transfer.The molar-driven heat transfer and thermal-driven mass transfer coefficients are both negative,implying that the humidity ratio difference acts to reduce the heat transfer and the temperature difference works to diminish the mass transfer.The mass transfer affects the heat transfer by 1%–2%while the heat transfer influences the mass transfer by7%–14%.The entropy generation caused by the temperature difference-induced heat transfer is much larger than that by the humidity difference-induced mass transfer. 展开更多
关键词 MEMBRANE Non-equilibrium thermodynamics heat transfer Mass transfer coupling effect
下载PDF
Analysis of influence of heat exchangerfouling on heat transfer performancebased on thermal fluid coupling 被引量:1
4
作者 HUANG Si MURAD Tariq +2 位作者 NIU Qifeng LIN Guangtang CHEN Jianxun 《排灌机械工程学报》 CSCD 北大核心 2023年第7期695-700,共6页
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do... A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact. 展开更多
关键词 shell-tube heat exchanger thermal fluid coupling fouling thermal resistance heat transfer analysis
下载PDF
Coupled Effects of Heat and Moisture of Early-Age Concrete 被引量:1
5
作者 Yang Wang Hanxi Wang +1 位作者 Linwei Yang Li Qian 《Fluid Dynamics & Materials Processing》 EI 2021年第4期845-857,共13页
In order to analyze the coupled influence of temperature and humidity on early-age concrete(including cement and copper tailings),a mathematical model is introduced on the basis of the Krstulovic-Dabic hydration react... In order to analyze the coupled influence of temperature and humidity on early-age concrete(including cement and copper tailings),a mathematical model is introduced on the basis of the Krstulovic-Dabic hydration reaction kinetic equations.In such a framework,the influence of hydration-released heat and water consumption are also taken into account.The results provided by such a model are verified by means of experiments and related sensor measurements.The research results show that this model can adequately predict the internal temperature and the humidity temporal evolution laws. 展开更多
关键词 Composite cementitious materials cement hydration MICRO-STRUCTURE diffusion coefficient coupled of heat and moisture
下载PDF
A novel electron-phonon coupling thermoelasticity with Burgers electronic heat transfer
6
作者 Hua WU Xinyi LI +1 位作者 Yajun YU Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第11期1927-1940,共14页
The electron-phonon interaction can reveal the microscopic mechanism of heat transfer in metals.The two-step heat conduction considering electron-phonon interaction has become an effective theoretical model for extrem... The electron-phonon interaction can reveal the microscopic mechanism of heat transfer in metals.The two-step heat conduction considering electron-phonon interaction has become an effective theoretical model for extreme environments,such as micro-scale and ultrafast processes.In this work,the two-step heat transfer model is further extended by considering the Burgers heat conduction model with the secondorder heat flux rate for electrons.Then,a novel generalized electron-phonon coupling thermoelasticity is proposed with the Burgers electronic heat transfer.Then,the problem of one-dimensional semi-infinite copper strip subject to a thermal shock at one side is studied by the Burgers two-step(BTS)model.The thermoelastic analytical solutions are systematically derived in the Laplace domain,and the numerical Laplace inversion method is adopted to obtain the transient responses.The new model is compared with the parabolic two-step(PTS)model and the hyperbolic two-step(HTS)model.The results show that in ultrafast heating,the BTS model has the same wave front jump as the HTS model.The present model has the faster wave speed,and predicts the bigger disturbed regions than the HTS model.More deeply,all two-step models also have the faster wave speeds than one-step models.This work may benefit the theoretical modeling of ultrafast heating of metals. 展开更多
关键词 Burgers heat transfer electron-phonon coupling two-step generalized thermoelasticity
下载PDF
Numerical simulation of aluminum holding furnace with fluid-solid coupled heat transfer 被引量:8
7
作者 周乃君 周善红 +1 位作者 张家奇 潘青林 《Journal of Central South University》 SCIE EI CAS 2010年第6期1389-1394,共6页
To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mat... To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30. 展开更多
关键词 aluminum holding furnace COMBUSTION heat transfer fluid-solid coupled numerical simulation
下载PDF
Stagnation-point flow of couple stress fluid with melting heat transfer 被引量:3
8
作者 T.HAYAT M.MUSTAFA +1 位作者 Z.IQBAL A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第2期167-176,共10页
Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the vel... Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet. 展开更多
关键词 couple stress fluid melting heat transfer stagnation-point flow series solution
下载PDF
Coupled Transfer of Water and Heat in Red Soil: Experiment and Numerical Modelling 被引量:4
9
作者 HANXIAOFEI LUJUN 《Pedosphere》 SCIE CAS CSCD 2001年第2期123-130,共8页
Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experiment... Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experimental data to predict the coupled transfer. The results show that transport of soil water was affected by temperature gradient, and the largest net water transport was found in the soil column with initial water content of 0.148 m3 m-3. At the same time, temperature changes with the transport of soil water was in a nonlinear shape as heat parameters were function of water content, and the changes of temperature were positively correlated with the net amount of water transported. Numerical modelling results show that the predicted values of temperature distribution were close to the observed values, while the predicted values of water content exhibited limited deviation at both ends of the soil column due to the slight temperature changes at both ends. It was indicated that the model proposed here was applicable. 展开更多
关键词 coupled transfer of water and heat numerical modelling red soil
下载PDF
Controlling Roll Temperature by Fluid-Solid Coupled Heat Transfer 被引量:2
10
作者 Jing-Feng Zou Li-Feng Ma +3 位作者 Guo-Hua Zhang Zhi-Quan Huang Jin-Bao Lin Peng-Tao Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第5期66-79,共14页
Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; theref... Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; therefore, a new model using circular fluid flow control roll temperature has been designed. A fluid heat transfer structure was designed, the heat transfer process model of the fluid heating roll was simplified, and the finite di erence method was used to cal?culate the heat transfer process. Fluent software was used to simulate the fluid?solid coupling heat transfer, and both the trend and regularity of the temperature field in the heat transfer process were identified. The results show that the heating e ciency was much higher than traditional heating methods(when the fluid heat of the roll and tempera?ture distribution of the roll surface was more uniform). Moreover, there was a bigger temperature di erence between the input and the output, and after using reverse flow the temperature di erence decreased. The axial and circum?ferential temperature distributions along the sheet were uniform. Both theoretical calculation results and numerical simulation results of the heat transfer between fluid and roll were compared. The error was 1.8%–12.3%, showing that the theoretical model can both forecast and regulate the temperature of the roll(for magnesium alloy sheets) in the rolling process. 展开更多
关键词 Magnesium alloy Fluid heating heat transfer model Numerical simulation of fluid?solid coupling
下载PDF
REGRESSION OF HEAT AND MOISTURE EXCHANGE DIAGRAM OF SWISS LUWA AIR WASHER
11
作者 倪波 《Journal of China Textile University(English Edition)》 EI CAS 1994年第1期88-92,共5页
The thesis has changed the heat and moisture exchange curves of Swiss Luwa air washer into double efficiency formulas which are widely used in our country with a computer, and also worked out the regression formula of... The thesis has changed the heat and moisture exchange curves of Swiss Luwa air washer into double efficiency formulas which are widely used in our country with a computer, and also worked out the regression formula of heat transfer efficiency(X). This has created favourable condition for us to use computer in our calculation of Luwa air washer. 展开更多
关键词 AIR conditioning nozzles AIR WASHERS heat and moisture exchange heat transfer efficiency humidifying efficiency.
下载PDF
THE NUMERICAL ANALYSIS OF UNSTEADY HEAT TRANSFER OF A PISTON-LINER COUPLED SYSTEM IN AN INTERNAL COMBUSTION ENGINE
12
作者 蒋惠强 《Journal of Southeast University(English Edition)》 EI CAS 1993年第2期69-78,共10页
This paper provides a numerical analysis model of unsteady heat trans-fer in piston-liner set of an internal combustion engine.The model simulates the un-steady heat transfer process among the combustion mixture,pisto... This paper provides a numerical analysis model of unsteady heat trans-fer in piston-liner set of an internal combustion engine.The model simulates the un-steady heat transfer process among the combustion mixture,piston set,lubricantfilm,liner and coolant in a whole engine cycle,and can predict the temperature fluc-tuation and distribution on piston crown,inner surface of liner,piston ring and thelubricant film.A computer program is developed to calculate the unsteady heat trans-fer process of piston-liner system in a water-cooled diesel engine. 展开更多
关键词 FEM FDM I.C. Engine temperature distributions transients fluctuation/unsteady heat transfer piston-liner coupled system
下载PDF
ANALYSIS OF THE THERMOPHYSICAL PARAMETERS OF MOIST WOOD PARTICLE MATERIAL IN A COUPLED HEAT AND MASS TRANSFER PROCESS OF FREEZING BY USING FINITE ELEMENT METHOD
13
作者 Shang DekuNortheast Forestry University 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1991年第2期69-76,共8页
The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element met... The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element method and the finite difference method). By matching the theoretical calculation to an experiment, the nonlinear problem was analyzed and the variable thermophysical parameters concerned was evaluated. The analysis procedure and the evaluation of the parameters were presented in detail. The result of the study showed that by using the method as described in the paper, it was possible to determine the variable (with respect to temperature, moisture content and freezing state) thermophysical parameters which were unknown or difficult to measure as long as the governing equations for a considered process were available. The method can significantly reduces the experiment efforts for determining thermophysical parameters which arc very complicated to measure. The determined variable of the effective heat conductivity of wood particle material was given in the paper. The error of the numerical calculation was also estimated by the comparison with a matched experiment. 展开更多
关键词 Finite element method Freezing process coupled heat and mass transfer Variable thermophysical parameters
下载PDF
Analysis of coupled flow-reaction with heat transfer in heap bioleaching processes
14
作者 吴爱祥 刘金枝 +1 位作者 尹升华 王洪江 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第12期1473-1480,共8页
A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics so... A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics software. Numerical simulation results show the following facts: Concentration of oxygen is relatively high along the boundary of the slope, and low in the center part where leaching rate is slow. Temper- ature is relatively low along the slope and reaches the highest along the bottom region near the slope, with difference being more than 6℃. Concentration of target mental ions is the highest in the bottom region near the slope. Oxidation leaching rate is relatively large in the bottom and slope part with a fast reaction rate, and small in the other part with low oxygen concentration. 展开更多
关键词 heap leaching model of coupled flow-reaction with heat transfer bioleaching numerical simulation
下载PDF
Coupled Conductive-Convective-Radiative Heat Transfer in Hollow Blocks with Two Air Cells in the Vertical Direction Subjected to an Incident Solar Flux
15
作者 Mourad Najjaoui Thami Ait-taleb +2 位作者 Abdelhalim Abdelbaki Zaki Zrikem Hassan Chaib 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1399-1407,共9页
This work presents the results of a set of steady-state numerical simulations about heat transfer in hollow blocks in the presence of coupled natural convection,conduction and radiation.Blocks with two air cells deep ... This work presents the results of a set of steady-state numerical simulations about heat transfer in hollow blocks in the presence of coupled natural convection,conduction and radiation.Blocks with two air cells deep in the vertical direction and three identical cavities in the horizontal direction are considered(typically used for building ceilings).Moreover,their outside horizontal surface is subjected to an incident solar flux and outdoor environment temperature while the inside surface is exposed to typical indoor environment conditions.The flows are considered laminar and two-dimensional over the whole range of parameters examined.The conservation equations are solved by means of a finite difference method based on the control volumes approach,relying on the SIMPLE algorithm for what concerns the coupling of pressure and velocity.The effects of the number of cells in the horizontal direction and the thermal conductivity on the heat transfer through the alveolar structure have been investigated.The results show that the number of holes has a significant impact on the value of the overall heat flux through the considered structure. 展开更多
关键词 Numerical simulation heat transfer coupled hollow concrete block control volumes approach
下载PDF
The Effect of Micro Air Movement on the Heat and Moisture Characteristics of Building Constructions
16
作者 A.W.M. (Jos) van Schijndel 《Journal of Civil Engineering and Architecture》 2010年第10期9-15,共7页
The research focuses on the effect of air movement through building constructions. Although the typical air movement inside building constructions is quite small (velocity is of order -10-5 m/s), this research shows... The research focuses on the effect of air movement through building constructions. Although the typical air movement inside building constructions is quite small (velocity is of order -10-5 m/s), this research shows the impact on the heat and moisture characteristics. The paper presents a case study on the modeling and simulation of 2D heat and moisture transport with and without air movement for a building construction using a state-of-art multiphysics FEM software tool. Most other heat and moisture related models don't include airflow or use a steady airflow through the construction during the simulation period. However, in this model, the wind induced pressure is dynamic and thus also the airflow through the construction is dynamic. For this particular case study, the results indicate that at the intemal surface, the vapor pressure is almost not influenced by both the 2D effect and the wind speed. The temperatures at the inner surface are mostly influenced by the 2D effect. Only at wind pressure differences above 30 Pa, the airflow has a significant effect. At the extemal surface, the temperatttres are not influenced by both the 2D effect and the wind speed. However, the vapor pressure seems to be quite dependent on the wind induced pressure. Overall it is concluded that air movement through building materials seems to have a significant impact on the heat and moisture characteristics. In order to verify this statement and validate the models, new in-depth experiments including air flow through materials are recommended. 展开更多
关键词 CONSTRUCTION heat moisture transfer air movement modeling.
下载PDF
Coupled heat and moisture transfer in walls featuring moisture-buffering materials and ventilating layers:An Experimental study
17
作者 Xueqiong He Chi Feng Huibo Zhang 《Energy and Built Environment》 2024年第1期97-109,共13页
The moisture performance of building envelopes largely depends on the building materials,construction tech-niques,and exposure loads from the indoor and outdoor regions.A ventilated air interlayer placed in a wall can... The moisture performance of building envelopes largely depends on the building materials,construction tech-niques,and exposure loads from the indoor and outdoor regions.A ventilated air interlayer placed in a wall can help dehumidify the wall and indoor air.This paper presents an experimental study of the heat,air,and moisture variations within the envelope wall of a chamber featuring different air interlayer settings under real outdoor air conditions during the summer of 2020 in Shanghai,China.Self-developed humidity-controlling building mate-rials were applied to the inner building envelope.Temperature,humidity,wind velocity,and heat-flow sensors were placed at different positions in the middle of the wall.These parameters were measured and recorded in real-time under three working conditions:humidification,dehumidification,and ventilation.The experimental results show that under the ventilation working conditions,moisture content of 0.52 kg can be removed after a 2-h air layer ventilation,which can benefit the design strategy for the humidification and ventilation of dehu-midification walls. 展开更多
关键词 Ventilated wall heat and humidity coupling transfer moisture-buffering materials Experimental research
原文传递
Study on inhomogeneous cooling behavior of extruded profile with unequal and large thicknesses during quenching using thermo-mechanical coupling model 被引量:6
18
作者 Zhi-wen LIU Jie YI +3 位作者 Shi-kang LI Wen-jie NIE Luo-xing LI Guan WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1211-1226,共16页
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica... The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°. 展开更多
关键词 aluminum profile unequal and large thicknesses water quenching heat transfer coefficient thermo-mechanical coupling model
下载PDF
External Heat Transfer in Moist Air and Superheated Steam for Softwood Drying 被引量:2
19
作者 PANGShusheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第6期762-766,共5页
In kiln drying of softwood timber, external heat and moisture mass transfercoefficients are important in defining boundary temperature and moisture content at the woodsurface. In addition, superheated steam drying of ... In kiln drying of softwood timber, external heat and moisture mass transfercoefficients are important in defining boundary temperature and moisture content at the woodsurface. In addition, superheated steam drying of wood is a promising technology but this has notbeen widely accepted commercially, partially due to the lack of understanding of the dryingphenomena occurred during drying. In this work, experimental investigation was performed to quantifythe heat transfer between wood surface and surrounding moist air or superheated steam. In theexperiment, saturated radiata pine sapwood samples were dried using dry-bulb/wet-bulb temperaturesof 60℃/50℃, 90℃/60℃, 120℃/70℃, 140℃/90℃, 160℃/90℃, 140℃/100℃ and 160℃/100℃. The lasttwo schedules were for superheated steam drying as the wet-bulb temperature was set at 100℃. Thecirculation velocity over the board surface was controlled at 4.2m·s^(-1). Two additional runs(90℃/60℃) using air velocities of 2.4 m·s^(-1) and 4.8 m·s^(-1) were performed to check theeffect of the circulation velocity. During drying, sample weight and temperatures at wood surfaceand different depths were continuously measured. Prom these measurements, changes in woodtemperature and moisture content were calculated and external heat-transfer coefficient wasdetermined for both the moist air and the superheated steam drying. 展开更多
关键词 wood drying external heat transfer coefficient moist air moisture content softwood timber superheated steam
下载PDF
Heat transfer analysis and experimental study of unequal diameter twin-roll casting process for fabricating Cu/Al clad strips 被引量:2
20
作者 HUANG Hua-gui ZHANG Jun-peng JI Ce 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1133-1146,共14页
Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the... Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the asymmetric heat transfer characteristics of Cu/Al clad strips fabricated by UDTRC.The effects of roller velocity ratio,Cu strip thickness,and inclination angle on the kissing point position,as well as the entire temperature distribution are obtained.The heat transfer model is established,and the mechanism is discussed.The Cu strip and rollers are found to be the main causes of asymmetric heat transfer,indicating that the roller velocity ratio changes the liquid zone proportion in the molten pool.The Cu strip thickness determines the heat absorption capacity and the variations in thermal resistance between the molten Al and the big roller.The inclination angle of the small roller changes the cooling time of big roller to molten Al.Moreover,the microstructure of Al cladding under different roller velocity ratios is examined.The results show significant grain refinement caused by the shear strain along the thickness direction of Al cladding and the intense heat transfer at the moment of contact between the metal Al cladding and Cu strip. 展开更多
关键词 unequal diameter twin-roll casting Cu/Al clad strips asymmetric heat transfer thermal-fluid coupled microstructure
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部