Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing dow...Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards.Computations are performed by varying the value ofΔT from5 to 30 K and P_(∞)/P_(cr)ratio from1.1 to 1.5.Variation of all the thermophysical properties of supercritical Nitrogen is considered.The wall temperatures are chosen in such a way that two values of Tw are less than T∗(T*is the temperature at which the fluid has a maximum value of Cp for the given pressure),one value equal to T∗and two values greater than T∗.Three different values of U∞are used to obtain Re∞range of 3.6×10_(4)to 4.74×10^(5)for forced convection without buoyancy effects and Gr_(∞)/Re^(2)_(∞)range of 0.011 to 3.107 for the case where buoyancy effects are predominant.Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions.It has been found that in all six forms of correlations,the maximum deviations are found to occur in those cases where the pseudocritical temperature TT∗lies between the wall temperature and bulk fluid temperature.展开更多
Natural convection heat transfer inside horizontal rectangular enclosure filled with the anisotropic porous media, with isothermally heated bottom and cooled top while the vertical walls are adiabatic, is analyzed num...Natural convection heat transfer inside horizontal rectangular enclosure filled with the anisotropic porous media, with isothermally heated bottom and cooled top while the vertical walls are adiabatic, is analyzed numerically by applying the Brinkman model-a modified form of Darcy model giving consideration to the viscous effect. The results show that: (1)the permeability ratio (K*=Ky/Kx) is an important factor affecting natural convection heat transfer in the porous media. As K' decreases, the circulation intensity of the natural convectioncells increase significantly, resulting in an enhancement of heat transfer coefficient; (2)the increase of Darcy number (aa=Ky/H2) implies that the viscous effect is more significant. As Da≥10-, there exists a certain difference between the Darcy model and the Brinkman model. It is more significant at a lower permeability ratio. In particalar, with K*≤0. 25, the Nusselt number for Da=10-3 would differ form that of Darcy model up to an amount of 30K. The Darcy flow as depicted by Darcy model is no longer existing and an analysis neglecting the viscous effect will inevitably be of considerable error.展开更多
Increase in the integration and package density of aviation electronic equipment provides severe challenge to heat control for electronic components, yet the microchannel radiator offers an efficient method for solvin...Increase in the integration and package density of aviation electronic equipment provides severe challenge to heat control for electronic components, yet the microchannel radiator offers an efficient method for solving the problem of cooling electronic chips and devices. In this paper, 6 micro rectangle channels with different sizes were designed and fabricated; the experiment of single\|phase forced convection heat transfer was conducted with solution of CH\-5OH, the most commonly used coolant for aviation electronic equipment, flowing through those microchannels. The influences of liquid velocity, degree of coolant supercooling, and configuration of microchannels on the heat transfer characteristics were analyzed respectively.展开更多
This study examines the heat transfer enhancement from a horizontal rectangular fin embedded with triangular perforations (their bases parallel and toward the fin tip) under natural convection. The fin's heat dissi...This study examines the heat transfer enhancement from a horizontal rectangular fin embedded with triangular perforations (their bases parallel and toward the fin tip) under natural convection. The fin's heat dissipation rate is compared to that of an equivalent solid one. The parameters considered are geometrical dimensions and thermal properties of the fin and the perforations. The gain in the heat transfer enhancement and the fin weight reduction due to the perforations are considered. The study shows that the heat dissipation from the perforated fin for a certain range of triangular perforation dimensions and spaces between perforations result in improvement in the heat transfer over the equivalent solid fin. The heat transfer enhancement of the perforated fin increases as the fin thermal conductivity and its thickness are increased.展开更多
Concentration gradient induced Rayleigh convection can influence effectively interracial mass transfer processes, but the convection phenomena are known as mesoscopic and complex. In order to investigate this phenomen...Concentration gradient induced Rayleigh convection can influence effectively interracial mass transfer processes, but the convection phenomena are known as mesoscopic and complex. In order to investigate this phenomenon, a two-equation Lattice Boltzmann Method (LBM) is proposed to simulate the velocity and the concentra-tion distributions of Rayleigh convection generated in the CO2 absorptlon into ethanol liquid.The simulated results on velocity distributions are experimentally verified by PIV (particle image velocimetry technique) measurements. In order to simplify the analysis, the convection in the simulation as well as in the experiment, the Rayleigh convection was manipulated into a single down flow pattern, The simulated results show that the concentration contours agree qualitatively with the schlieren images in the literature. The experimental and simulated results show that theRayleigh convection under investigation is dominated by the flow in the downward direction and impels exchange of the liquid between the interfacial vicinity and the liquid bulk promoting the renewal of interfacial liquid, and hence enhances mass transfer. The comparison between the simulated and experimental results demonstrated that the proposed LBM is a promising alternative for simulating mass transfer induced Rayleigh convection.展开更多
The study of average convection in a rotating cavity subjected to modulated rotation is an interesting area for the development of both fundamental and applied science.This phenomenon finds application in the field of...The study of average convection in a rotating cavity subjected to modulated rotation is an interesting area for the development of both fundamental and applied science.This phenomenon finds application in the field of mass transfer and fluid flow control,relevant examples being crystal growth under reduced gravity and fluid mixing in microfluidic devices for cell cultures.In this study,the averaged flow generated by the oscillating motion of a fluid in a planar layer rotating about a horizontal axis is experimentally investigated.The boundaries of the layer are maintained at constant temperatures,while the lateral cylindrical wall is thermally insulated.It is demonstrated that libration results in intense oscillatory fluid motion,which in turn produces a time-averaged flow.For the first time,quantitative measures for the instantaneous velocity field are obtained using the Particle Image Velocimetry technique.It is revealed that the flow has the form of counter-rotating vortices.The vortex circulations sense changes during a libration cycle.An increase in the rotation rate and amplitude of the cavity libration results in an increase in the flow intensity.The heat transfer and time-averaged velocity are examined accordingly as a function of the dimensionless oscillation frequency,and resonant excitation of heat transfer and average oscillation velocity are revealed.The threshold curve for the onset of the averaged convection is identified in the plane of control parameters(dimensionless rotational velocity and pulsation Reynolds number).It is found that an increase in the dimensionless rotational velocity has a stabilizing effect on the onset of convection.展开更多
Heat transfer enhancement in vertical tubes plays an important role on the thermal performance of many heat exchangers and thermal devices.In this work,laminar mixed convection of airflow in a vertical dimpled tube wa...Heat transfer enhancement in vertical tubes plays an important role on the thermal performance of many heat exchangers and thermal devices.In this work,laminar mixed convection of airflow in a vertical dimpled tube was numerically investigated.Three-dimensional elliptical governing equations were solved using the finite-volume technique.For a given dimpled pitch,the effects of three different dimple heights(h/D=0.013,0.027,0.037) have been studied at different Richardson numbers(0.1,1.0 and 1.5).The generated vortex in the vicinity of the dimple destructs the thermal boundary layer and enhances the heat transfer.Therefore,lower wall temperature is seen where the dimples are located.Fluid flow velocity at the near-wall region significantly increases because of buoyancy forces with the increase of Richardson numbers.Such an acceleration at the near-wall region makes the dimples more effective at higher Richardson number.Using a dimpled tube enhances the heat transfer coefficient.However,the pressure drop is not important.For instance,in the case of Ri=1.5 and h/D=0.037,20% gains in the heat transfer enhancement only costs2.5% in the pressure loss.In general,it is recommended using a dimpled tube where the effects of buoyancy forces are important.展开更多
The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically.In particular,the impact of nanoflu...The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically.In particular,the impact of nanofluids,composed of water and Al_(2)O_(3),TiO_(2),and Cu nanoparticles,on heat transfer enhancement is examined.The aim of this research is also to analyze the influence of different parameters,including the Rayleigh number(Ra=10^(4)-10^(6)),nanoparticle volume fraction(φ=0%-20%),non-Newtonian power-law indexes(n=0.6-1.4),and fin dimensions(Ar=0.3,0.5,and 0.7).Streamlines and isotherms are used to depict flow and related heat transfer characteristics.Results indicate that thermal performance improves with increasing Rayleigh number,regardless of the nanoparticle type or nanofluid rheological behavior.This suggests that the buoyancy force has a significant impact on heat transfer,particularly near the heat source.The Nusselt number is more sensitive to variations in Cu nanoparticle volume fractions compared to Al₂O₃and TiO₂.Moreover,the average Nusselt numbers for power-law nanofluids with n<1(n>1)are greater(smaller)than for Newtonian fluids due to the decrease(increase)in viscosity with increasing(decreasing)shear rate,at the same values of Rayleigh number Ra owing to the amplification(attenuation)of the convective transfer.Notably,the most substantial enhancement is observed with Cu-water shear-thinning nanofluid,where the Nusselt number increases by 136%when changing from Newtonian to shear thinning behavior and by 154.9%when adding 16%nanoparticle volume fraction.Moreover,an even larger increase of 57%in the average Nusselt number is obtained on increasing the fin length from 0.3 to 0.7.展开更多
Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and m...Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and mass transfer characteristics at the gas-liquid interface were numerical analyzed and the results indicated that it was not reasonable to neglect the condensate film from the point of its thickness only. The condensate film thickness, interface temperature drop and the interface tangential velocity affect the physical fields weakly. However, the subcooling and the interface normal velocity were important factors to be considered before the simplification was made. For higher wall temperature, the advective mass transfer contributed much to the total mass transfer. Therefore, the boundary conditions were the key to judge the rationality of neglecting the condensate film for numerical solutions. The numerical results were checked by comparing with experiments and correlations.展开更多
Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determ...Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.展开更多
The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanopavticle concentration distributions are obtained. The effect...The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanopavticle concentration distributions are obtained. The effects of the Brownian motion parameter Nb, the thermophoresis parameter Nt, and the Lewis number Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.展开更多
A self-similar solution of unsteady mixed convection flow on a rotating cone embedded in a porous medium saturated with a rotating fluid in the presence of the first and second orders resistances has been obtained. It...A self-similar solution of unsteady mixed convection flow on a rotating cone embedded in a porous medium saturated with a rotating fluid in the presence of the first and second orders resistances has been obtained. It has been shown that a self-similar solution is possible when the free stream angular velocity and the angular velocity of the cone vary inversely as a linear function of time. The system of ordinary differential equations governing the flow has been solved numerically using an implicit finite difference scheme in combination with the quasi-linearization technique. Both prescribe wall temperature and prescribed heat flux conditions are considered. Numerical results are reported for the skin friction coefficients, Nusselt number and Sherwood number. The effect of various parameters on the velocity, temperature and concentration profiles are also presented here.展开更多
Forced-air convection cooling of high-power electronic devices is widely used, but it has a problem that a rise in temperature of the air used to cool the upstream devices decreases the cooling capa-bility for the dow...Forced-air convection cooling of high-power electronic devices is widely used, but it has a problem that a rise in temperature of the air used to cool the upstream devices decreases the cooling capa-bility for the downstream devices. In this study we made an experimental apparatus including a memory card array and measured the effect of the rise in temperature of the air on the heat transfer coefficient of the memory cards that were downstream in the air flow. Using these mea-surements, we devised a simple calculation model, called the thermal diffusion layer model, to calculate the heat transfer coefficient of multiple rows of memory cards. The rise in temperature of downstream memory cards due to higher temperature air can be evaluated with a parameter representing the delay of thermal mixing for air. The heat transfer coefficient calculated with the thermal diffusion layer model agreed with our experimental results.展开更多
In this paper a numerical study of a turbulent, natural convection problem is performed with a compressible Large-Eddy simulation. In a natural convection the fluid is accelerated by local density differences and a re...In this paper a numerical study of a turbulent, natural convection problem is performed with a compressible Large-Eddy simulation. In a natural convection the fluid is accelerated by local density differences and a resulting pressure gradient. Directly at the heated walls the temperature distribution is determinate by increasing temperature gradients. In the centre region convective mass exchange is dominant. Density changes due to temperature differences are considered in the numerical model by a compressible coupled model. The obtained numerical results of this study are compared to an analogue experimental setup. The fluid properties profiles, e.g. temperature and velocity, show an asymmetry which is caused by the non-Boussinesq effects of the fluid. The investigated Rayleigh number of this study lies at Ra = 1.58 × 109.展开更多
Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design pa...Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.展开更多
Nowadays some new ideas of fractional derivatives have been used successfully in the present research community to study different types of mathematical models.Amongst them,the significant models of fluids and heat or...Nowadays some new ideas of fractional derivatives have been used successfully in the present research community to study different types of mathematical models.Amongst them,the significant models of fluids and heat or mass transfer are on priority.Most recently a new idea of fractal-fractional derivative is introduced;however,it is not used for heat transfer in channel flow.In this article,we have studied this new idea of fractal fractional operators with power-law kernel for heat transfer in a fluid flow problem.More exactly,we have considered the free convection heat transfer for a Newtonian fluid.The flow is bounded between two parallel static plates.One of the plates is heated constantly.The proposed problem is modeled with a fractal fractional derivative operator with a power-law kernel and solved via the Laplace transform method to find out the exact solution.The results are graphically analyzed via MathCad-15 software to study the behavior of fractal parameters and fractional parameter.For the influence of temperature and velocity profile,it is observed that the fractional parameter raised the velocity and temperature as compared to the fractal operator.Therefore,a combined approach of fractal fractional explains the memory of the function better than fractional only.展开更多
Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimenta...Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimental method. The experimental results show that heat conduction of sinter impacts the measurement of convection heat transfer coefficient. Convection heat transfer increases with the increase of air volumetric flow rate. Sinter layer without small particles(sample I) gives higher convection heat transfer coefficient than that with small particles(sample II). Under the considered conditions, volumetric convection heat transfer coefficient is in the range of 400-1800 W/(m3·°C). Air pressure drop in sinter layer increases with the increase of normal superficial velocity, as well as with the rise of air temperature. Additionally, air pressure drop also depends on sinter particle size distribution. In considered experimental conditions, pressure drop in sinter sample II is 2-3 times that in sinter sample I, which resulted from 17% small scale particles in sinter sample II.展开更多
The velocity distribution in Rayleigh convection caused by acetone volatilization in acetone-ethyl acetate binary system was observed in a vertical cross section of an initially quiescent liquid layer by utilizing par...The velocity distribution in Rayleigh convection caused by acetone volatilization in acetone-ethyl acetate binary system was observed in a vertical cross section of an initially quiescent liquid layer by utilizing particle image velocimetry. Obvious turbulent vortexes that were induced by Rayleigh convection appeared in the bulk liquid,and its statistic features indicated that Rayleigh convection became more intense with the increase of Ra number and ReGnumber. Mass transfer coefficient was measured and the computed enhancement factor indicated that Rayleigh convection could promote the surface renewal of the liquid phase and intensify the interfacial mass transfer significantly. A method was proposed for the prediction of mass transfer coefficient based on the measured velocity vector, and the predicted mass transfer coefficients are in reasonable agreement with the experimental results.展开更多
The convection patterns were observed in laser cladding layer of FeCrSiB alloy.Laser beam symmetry, dilution of cladding layer from substrate,etc.With relation to con- vection patterns have been investigated.Macro-seg...The convection patterns were observed in laser cladding layer of FeCrSiB alloy.Laser beam symmetry, dilution of cladding layer from substrate,etc.With relation to con- vection patterns have been investigated.Macro-segregation and macroalloying in the cladding layer were found to be resulted from convection.The dilution rates of substrate materials into cladding layer are directly influential in microstructure and performace of the cladding.Ideal laser cladding conditions require that there is a minimum of dilution.展开更多
文摘Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards.Computations are performed by varying the value ofΔT from5 to 30 K and P_(∞)/P_(cr)ratio from1.1 to 1.5.Variation of all the thermophysical properties of supercritical Nitrogen is considered.The wall temperatures are chosen in such a way that two values of Tw are less than T∗(T*is the temperature at which the fluid has a maximum value of Cp for the given pressure),one value equal to T∗and two values greater than T∗.Three different values of U∞are used to obtain Re∞range of 3.6×10_(4)to 4.74×10^(5)for forced convection without buoyancy effects and Gr_(∞)/Re^(2)_(∞)range of 0.011 to 3.107 for the case where buoyancy effects are predominant.Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions.It has been found that in all six forms of correlations,the maximum deviations are found to occur in those cases where the pseudocritical temperature TT∗lies between the wall temperature and bulk fluid temperature.
文摘Natural convection heat transfer inside horizontal rectangular enclosure filled with the anisotropic porous media, with isothermally heated bottom and cooled top while the vertical walls are adiabatic, is analyzed numerically by applying the Brinkman model-a modified form of Darcy model giving consideration to the viscous effect. The results show that: (1)the permeability ratio (K*=Ky/Kx) is an important factor affecting natural convection heat transfer in the porous media. As K' decreases, the circulation intensity of the natural convectioncells increase significantly, resulting in an enhancement of heat transfer coefficient; (2)the increase of Darcy number (aa=Ky/H2) implies that the viscous effect is more significant. As Da≥10-, there exists a certain difference between the Darcy model and the Brinkman model. It is more significant at a lower permeability ratio. In particalar, with K*≤0. 25, the Nusselt number for Da=10-3 would differ form that of Darcy model up to an amount of 30K. The Darcy flow as depicted by Darcy model is no longer existing and an analysis neglecting the viscous effect will inevitably be of considerable error.
文摘Increase in the integration and package density of aviation electronic equipment provides severe challenge to heat control for electronic components, yet the microchannel radiator offers an efficient method for solving the problem of cooling electronic chips and devices. In this paper, 6 micro rectangle channels with different sizes were designed and fabricated; the experiment of single\|phase forced convection heat transfer was conducted with solution of CH\-5OH, the most commonly used coolant for aviation electronic equipment, flowing through those microchannels. The influences of liquid velocity, degree of coolant supercooling, and configuration of microchannels on the heat transfer characteristics were analyzed respectively.
文摘This study examines the heat transfer enhancement from a horizontal rectangular fin embedded with triangular perforations (their bases parallel and toward the fin tip) under natural convection. The fin's heat dissipation rate is compared to that of an equivalent solid one. The parameters considered are geometrical dimensions and thermal properties of the fin and the perforations. The gain in the heat transfer enhancement and the fin weight reduction due to the perforations are considered. The study shows that the heat dissipation from the perforated fin for a certain range of triangular perforation dimensions and spaces between perforations result in improvement in the heat transfer over the equivalent solid fin. The heat transfer enhancement of the perforated fin increases as the fin thermal conductivity and its thickness are increased.
基金Supported by the National Natural Science Foundation of China (20736005).
文摘Concentration gradient induced Rayleigh convection can influence effectively interracial mass transfer processes, but the convection phenomena are known as mesoscopic and complex. In order to investigate this phenomenon, a two-equation Lattice Boltzmann Method (LBM) is proposed to simulate the velocity and the concentra-tion distributions of Rayleigh convection generated in the CO2 absorptlon into ethanol liquid.The simulated results on velocity distributions are experimentally verified by PIV (particle image velocimetry technique) measurements. In order to simplify the analysis, the convection in the simulation as well as in the experiment, the Rayleigh convection was manipulated into a single down flow pattern, The simulated results show that the concentration contours agree qualitatively with the schlieren images in the literature. The experimental and simulated results show that theRayleigh convection under investigation is dominated by the flow in the downward direction and impels exchange of the liquid between the interfacial vicinity and the liquid bulk promoting the renewal of interfacial liquid, and hence enhances mass transfer. The comparison between the simulated and experimental results demonstrated that the proposed LBM is a promising alternative for simulating mass transfer induced Rayleigh convection.
基金supported by the Russian Science Foundation(Grant No.22-71-00086).
文摘The study of average convection in a rotating cavity subjected to modulated rotation is an interesting area for the development of both fundamental and applied science.This phenomenon finds application in the field of mass transfer and fluid flow control,relevant examples being crystal growth under reduced gravity and fluid mixing in microfluidic devices for cell cultures.In this study,the averaged flow generated by the oscillating motion of a fluid in a planar layer rotating about a horizontal axis is experimentally investigated.The boundaries of the layer are maintained at constant temperatures,while the lateral cylindrical wall is thermally insulated.It is demonstrated that libration results in intense oscillatory fluid motion,which in turn produces a time-averaged flow.For the first time,quantitative measures for the instantaneous velocity field are obtained using the Particle Image Velocimetry technique.It is revealed that the flow has the form of counter-rotating vortices.The vortex circulations sense changes during a libration cycle.An increase in the rotation rate and amplitude of the cavity libration results in an increase in the flow intensity.The heat transfer and time-averaged velocity are examined accordingly as a function of the dimensionless oscillation frequency,and resonant excitation of heat transfer and average oscillation velocity are revealed.The threshold curve for the onset of the averaged convection is identified in the plane of control parameters(dimensionless rotational velocity and pulsation Reynolds number).It is found that an increase in the dimensionless rotational velocity has a stabilizing effect on the onset of convection.
文摘Heat transfer enhancement in vertical tubes plays an important role on the thermal performance of many heat exchangers and thermal devices.In this work,laminar mixed convection of airflow in a vertical dimpled tube was numerically investigated.Three-dimensional elliptical governing equations were solved using the finite-volume technique.For a given dimpled pitch,the effects of three different dimple heights(h/D=0.013,0.027,0.037) have been studied at different Richardson numbers(0.1,1.0 and 1.5).The generated vortex in the vicinity of the dimple destructs the thermal boundary layer and enhances the heat transfer.Therefore,lower wall temperature is seen where the dimples are located.Fluid flow velocity at the near-wall region significantly increases because of buoyancy forces with the increase of Richardson numbers.Such an acceleration at the near-wall region makes the dimples more effective at higher Richardson number.Using a dimpled tube enhances the heat transfer coefficient.However,the pressure drop is not important.For instance,in the case of Ri=1.5 and h/D=0.037,20% gains in the heat transfer enhancement only costs2.5% in the pressure loss.In general,it is recommended using a dimpled tube where the effects of buoyancy forces are important.
基金financial support by Campus France within the framework of the PHC-Maghreb 45990SH Projectsupport from the Tunisian Republic Ministry of Higher Education and Scientific Research for a part of her stay in France.
文摘The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically.In particular,the impact of nanofluids,composed of water and Al_(2)O_(3),TiO_(2),and Cu nanoparticles,on heat transfer enhancement is examined.The aim of this research is also to analyze the influence of different parameters,including the Rayleigh number(Ra=10^(4)-10^(6)),nanoparticle volume fraction(φ=0%-20%),non-Newtonian power-law indexes(n=0.6-1.4),and fin dimensions(Ar=0.3,0.5,and 0.7).Streamlines and isotherms are used to depict flow and related heat transfer characteristics.Results indicate that thermal performance improves with increasing Rayleigh number,regardless of the nanoparticle type or nanofluid rheological behavior.This suggests that the buoyancy force has a significant impact on heat transfer,particularly near the heat source.The Nusselt number is more sensitive to variations in Cu nanoparticle volume fractions compared to Al₂O₃and TiO₂.Moreover,the average Nusselt numbers for power-law nanofluids with n<1(n>1)are greater(smaller)than for Newtonian fluids due to the decrease(increase)in viscosity with increasing(decreasing)shear rate,at the same values of Rayleigh number Ra owing to the amplification(attenuation)of the convective transfer.Notably,the most substantial enhancement is observed with Cu-water shear-thinning nanofluid,where the Nusselt number increases by 136%when changing from Newtonian to shear thinning behavior and by 154.9%when adding 16%nanoparticle volume fraction.Moreover,an even larger increase of 57%in the average Nusselt number is obtained on increasing the fin length from 0.3 to 0.7.
基金Supported by the National Basic Research Program of China (2011CB706904) and Beijing Natural Science Foundation (3071001)
文摘Condensation of humid air along a vertical plate was numerically investigated, with the mathematical model built on the full boundary layer equations and the film-wise condensation assumption. The velocity, heat and mass transfer characteristics at the gas-liquid interface were numerical analyzed and the results indicated that it was not reasonable to neglect the condensate film from the point of its thickness only. The condensate film thickness, interface temperature drop and the interface tangential velocity affect the physical fields weakly. However, the subcooling and the interface normal velocity were important factors to be considered before the simplification was made. For higher wall temperature, the advective mass transfer contributed much to the total mass transfer. Therefore, the boundary conditions were the key to judge the rationality of neglecting the condensate film for numerical solutions. The numerical results were checked by comparing with experiments and correlations.
文摘Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.
基金Project supported by the National Natural Science Foundation of China (No. 10972136) and the Doctoral Fund for New Teachers of Higher Eduation of China (No. 20090073120014)
文摘The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanopavticle concentration distributions are obtained. The effects of the Brownian motion parameter Nb, the thermophoresis parameter Nt, and the Lewis number Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.
文摘A self-similar solution of unsteady mixed convection flow on a rotating cone embedded in a porous medium saturated with a rotating fluid in the presence of the first and second orders resistances has been obtained. It has been shown that a self-similar solution is possible when the free stream angular velocity and the angular velocity of the cone vary inversely as a linear function of time. The system of ordinary differential equations governing the flow has been solved numerically using an implicit finite difference scheme in combination with the quasi-linearization technique. Both prescribe wall temperature and prescribed heat flux conditions are considered. Numerical results are reported for the skin friction coefficients, Nusselt number and Sherwood number. The effect of various parameters on the velocity, temperature and concentration profiles are also presented here.
文摘Forced-air convection cooling of high-power electronic devices is widely used, but it has a problem that a rise in temperature of the air used to cool the upstream devices decreases the cooling capa-bility for the downstream devices. In this study we made an experimental apparatus including a memory card array and measured the effect of the rise in temperature of the air on the heat transfer coefficient of the memory cards that were downstream in the air flow. Using these mea-surements, we devised a simple calculation model, called the thermal diffusion layer model, to calculate the heat transfer coefficient of multiple rows of memory cards. The rise in temperature of downstream memory cards due to higher temperature air can be evaluated with a parameter representing the delay of thermal mixing for air. The heat transfer coefficient calculated with the thermal diffusion layer model agreed with our experimental results.
文摘In this paper a numerical study of a turbulent, natural convection problem is performed with a compressible Large-Eddy simulation. In a natural convection the fluid is accelerated by local density differences and a resulting pressure gradient. Directly at the heated walls the temperature distribution is determinate by increasing temperature gradients. In the centre region convective mass exchange is dominant. Density changes due to temperature differences are considered in the numerical model by a compressible coupled model. The obtained numerical results of this study are compared to an analogue experimental setup. The fluid properties profiles, e.g. temperature and velocity, show an asymmetry which is caused by the non-Boussinesq effects of the fluid. The investigated Rayleigh number of this study lies at Ra = 1.58 × 109.
基金supported by the Second Stage of Brain Korea 21 Projects
文摘Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.
基金This work was supported by the Natural Science Foundation of China(Grant Nos.61673169,11701176,11626101,11601485).
文摘Nowadays some new ideas of fractional derivatives have been used successfully in the present research community to study different types of mathematical models.Amongst them,the significant models of fluids and heat or mass transfer are on priority.Most recently a new idea of fractal-fractional derivative is introduced;however,it is not used for heat transfer in channel flow.In this article,we have studied this new idea of fractal fractional operators with power-law kernel for heat transfer in a fluid flow problem.More exactly,we have considered the free convection heat transfer for a Newtonian fluid.The flow is bounded between two parallel static plates.One of the plates is heated constantly.The proposed problem is modeled with a fractal fractional derivative operator with a power-law kernel and solved via the Laplace transform method to find out the exact solution.The results are graphically analyzed via MathCad-15 software to study the behavior of fractal parameters and fractional parameter.For the influence of temperature and velocity profile,it is observed that the fractional parameter raised the velocity and temperature as compared to the fractal operator.Therefore,a combined approach of fractal fractional explains the memory of the function better than fractional only.
基金Project(51306198)supported by the National Natural Science Foundation of China
文摘Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimental method. The experimental results show that heat conduction of sinter impacts the measurement of convection heat transfer coefficient. Convection heat transfer increases with the increase of air volumetric flow rate. Sinter layer without small particles(sample I) gives higher convection heat transfer coefficient than that with small particles(sample II). Under the considered conditions, volumetric convection heat transfer coefficient is in the range of 400-1800 W/(m3·°C). Air pressure drop in sinter layer increases with the increase of normal superficial velocity, as well as with the rise of air temperature. Additionally, air pressure drop also depends on sinter particle size distribution. In considered experimental conditions, pressure drop in sinter sample II is 2-3 times that in sinter sample I, which resulted from 17% small scale particles in sinter sample II.
基金Supported by the National Natural Science Foundation of China(20736005)
文摘The velocity distribution in Rayleigh convection caused by acetone volatilization in acetone-ethyl acetate binary system was observed in a vertical cross section of an initially quiescent liquid layer by utilizing particle image velocimetry. Obvious turbulent vortexes that were induced by Rayleigh convection appeared in the bulk liquid,and its statistic features indicated that Rayleigh convection became more intense with the increase of Ra number and ReGnumber. Mass transfer coefficient was measured and the computed enhancement factor indicated that Rayleigh convection could promote the surface renewal of the liquid phase and intensify the interfacial mass transfer significantly. A method was proposed for the prediction of mass transfer coefficient based on the measured velocity vector, and the predicted mass transfer coefficients are in reasonable agreement with the experimental results.
文摘The convection patterns were observed in laser cladding layer of FeCrSiB alloy.Laser beam symmetry, dilution of cladding layer from substrate,etc.With relation to con- vection patterns have been investigated.Macro-segregation and macroalloying in the cladding layer were found to be resulted from convection.The dilution rates of substrate materials into cladding layer are directly influential in microstructure and performace of the cladding.Ideal laser cladding conditions require that there is a minimum of dilution.