期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
Microstructure and embrittlement of the fine-grained heat-affected zone of ASTM4130 steel 被引量:2
1
作者 Li-ying Li Yong Wang Tao Han Chao-wen Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第4期419-423,共5页
The mechanical properties and microstructure features of the fine-grained heat-affected zone(FGHAZ) of ASTM4130 steel was investigated by optical microscope(OM),scanning electron microscope(SEM),transmission ele... The mechanical properties and microstructure features of the fine-grained heat-affected zone(FGHAZ) of ASTM4130 steel was investigated by optical microscope(OM),scanning electron microscope(SEM),transmission electron microscope(TEM),and welding thermal simulation test.It is found that serious embrittlement occurs in the FGHAZ with an 81.37% decrease of toughness,compared with that of the base metal.Microstructure analysis reveals that the FGHAZ is mainly composed of acicular,equiaxed ferrite,granular ferrite,martensite,and martensite-austenite(M-A) constituent.The FGHAZ embrittlement is mainly induced by granular ferrite because of carbides located at its boundaries and sub-boundaries.Meanwhile,the existence of martensite and M-A constituent,which distribute in a discontinuous network,is also detrimental to the mechanical properties. 展开更多
关键词 ASTM4130 steel WELDING heat-affected zone microstructure EMBRITTLEMENT
下载PDF
Microstructure and toughness of coarse grain heat-affected zone for Nb-microalloyed X80 pipeline steel 被引量:1
2
作者 李亚娟 李午申 陈仁华 《China Welding》 EI CAS 2011年第4期57-61,共5页
Based on welding thermal simulation on Nb-microaUoyed XSO pipeline stee! using Gleeble-3500 thermal simulation equipment, microstlttcture and impact toughness in coarse grain heat-affected zone (CGHAZ) under differe... Based on welding thermal simulation on Nb-microaUoyed XSO pipeline stee! using Gleeble-3500 thermal simulation equipment, microstlttcture and impact toughness in coarse grain heat-affected zone (CGHAZ) under different welding parameters were investigated in this paper. The results show that high heat inputs with low preheats or low heat inputs with high preheats should be applied to achieve high impact toughness. Coarse original austenite grains may lower impact toughness. CGHAZ microstructure is mostly composed of upper bainite, granular bainite and lath bainite. The phase composition of microstructure and the quantity, size, shape of M/A constituents both have effects on impact toughness. 展开更多
关键词 Nb-microalloyed XSO pipeline steel heat-affected zone microstructure TOUGHNESS
下载PDF
Influence of the secondary welding thermal cycle on the microstructure and property of coarse grain heat-affected zone in an X100 pipeline steel
3
作者 张骁勇 高惠临 +1 位作者 吉玲康 庄传晶 《China Welding》 EI CAS 2010年第3期25-30,共6页
The influence of the secondary thermal cycle on the microstructure of coarse grain heat-affected zone in an XIO0 pipeline steel was investigated by means of a thermal simulation technique and microscopic analysis meth... The influence of the secondary thermal cycle on the microstructure of coarse grain heat-affected zone in an XIO0 pipeline steel was investigated by means of a thermal simulation technique and microscopic analysis method. The property of coarse grain heat-affected zone was characterized by Charpy V-Notch impact properties testing. The results indicated that the experimental steel exhibited local brittleness of intercritically reheated coarse-grained heat-affected zone when the peak tempera- ture of secondary thermal cycle was in the range of two phases region ( ~ and 3/). There were two main reasons for the local brittleness. The first was that the microstructures of intercritically reheated coarse-grained heat-affected zone were not fined although partial grain recrystallization occurred. The second was that M-A islands, which had the higher content, larger size and higher hardness, existed in intercritically reheated coarse-grained heat-affected zone. 展开更多
关键词 X100 pipeline steel secondary thermal cycle microstructure coarse grain heat-affected zone
下载PDF
Effects of Electrode Types on the Microstructure, Tensile and Hardness Properties of 304 L Austenitic Stainless Steel Heat-Affected Zone (HAZ)
4
作者 Bolarinwa Johnson Kutelu Emmanuel Gbolade Adubi Saliu Ojo Seidu 《Journal of Minerals and Materials Characterization and Engineering》 2018年第5期531-540,共10页
Submerged arc welding (SAW) has been well utilised for the production of weld joints in 304 L ASS for various industrial application. However, effective performance of the material in service has been hampered by impr... Submerged arc welding (SAW) has been well utilised for the production of weld joints in 304 L ASS for various industrial application. However, effective performance of the material in service has been hampered by improper choice of electrode. Therefore, in this study, effects of different types of electrode on the microstructure and tensile property of type 304 L austenitic stainless steel heat-affected zone (HAZ) were studied. Chemical composition of the as-received sample was determined. A number of samples were cut from the as-received sample. Afterwards, two half were joined together with 308 L, 312 L and 316 electrodes at a controlled welding speed, current and voltage of 4.6 mm/s, 160 A and 30 V to produce a constant heat input of 626.09 J/mm. An automatic SAW machine with Model Type: DX3-301, and Frequency: 50 Hz was used. And based on ASTM standard, tensile and hardness samples were prepared from the as-received and HAZs. Tensile and hardness measurements were made. Also, specimens for microscopy studies were prepared from the HAZ and as-received samples. From the results, microstructures of the HAZs revealed varied volume fraction of austenite and ferrite phases and grain sizes, and at austenite and ferrite grain boundaries, chromium carbide formation and precipitation were observed. The weld joint produced with 308 L electrode revealed optimum UTS value and YS value of 475 and 325 respectively. While weld joint produced with 316 L electrode has superior ductility of value 41%. Irrespective of the types of electrode used, the as-received sample revealed superior tensile properties over the weld joints. Also, optimum hardness value of 45.7 HRA was obtained with 308 L. Hardness value of the as-received sample was higher than that of HAZ samples. 展开更多
关键词 heat-affected zone STAINLESS Steel Volume FRACTION microstructures HARDNESS TENSILE
下载PDF
Influence of different microstructural features on impact toughness and crack initiation behavior of coarse grain heat-affected zone in X80 pipeline steel 被引量:2
5
作者 QIAN Weifang 《Baosteel Technical Research》 CAS 2021年第4期2-11,共10页
Coarse grain heat-affected zone samples of X80 pipeline steel under different heat inputs were obtained through thermal welding simulation experiments with Gleeble 3500.Charpy impact tests and a combination of multisc... Coarse grain heat-affected zone samples of X80 pipeline steel under different heat inputs were obtained through thermal welding simulation experiments with Gleeble 3500.Charpy impact tests and a combination of multiscale characterizations were conducted to investigate the influence of various microstructural features on impact toughness and crack initiation behavior.The results prove that, as the heat input increases, the number of M/A components increases, thereby degrading toughness and increasing hardness.Meanwhile, more M/A constituents tend to aggregate on prior austenite grain boundaries(PAGBs),and the overall dimensions of M/A and the width and volume fraction of the lath martensite substructure inside M/A islands would increase as well.These changes make intersections between boundary M/As and PAGBs become one of the preferred sites for crack initiation.In addition, only large-sized grotesque inclusions can act as a direct inducement of crack initiation. 展开更多
关键词 X80 pipeline steel coarse grain heat-affected zone microstructural features impact toughness crack initiation
下载PDF
Effect of t_(8/5) on the microstructure and properties of the HAZ of ASME SA213-T92 steel by thermal simulation 被引量:4
6
作者 吴军 邹增大 王新洪 《China Welding》 EI CAS 2007年第3期36-40,共5页
The relationship between the t8/5 and micro-hardness, impact toughness in the heat affected zone (HAZ) of ASME SA213-792 at peak temperature of 1 350 ℃ was studied by thermal simulation. The result shows that the m... The relationship between the t8/5 and micro-hardness, impact toughness in the heat affected zone (HAZ) of ASME SA213-792 at peak temperature of 1 350 ℃ was studied by thermal simulation. The result shows that the micro-hardness of HAZ rises at the beginning and then decreases with increasing of t8/5 , whereas the impact toughness presents reverse trend. The distribution of precipitates in substrate has great influence on the impact toughness of HAZ. When the t8/5 is 40 s, chain-like precipitates lower the impact toughness of HAZ seriously. 展开更多
关键词 ASME SA213-T92 impact toughness micro-hardness heat-affected zone (HAZ) thermal simulation
下载PDF
Study on laser welded heat-affected zone in new ultralow carbon bainitic steel
7
作者 Lin Zhao Wuzhu Chen +1 位作者 Xudong Zhang Jiguo Shan 《Journal of University of Science and Technology Beijing》 CSCD 2007年第2期136-140,共5页
800 MPa grade ultralow carbon bainitic (NULCB) steel is the recently developed new generation steel, which was produced by thermo mechanical controlled processing & relaxation-precipitation controlling transformati... 800 MPa grade ultralow carbon bainitic (NULCB) steel is the recently developed new generation steel, which was produced by thermo mechanical controlled processing & relaxation-precipitation controlling transformation (TMCP&RPC) tech- nique. The microstructure and the mechanical properties of the heat-affected zone (HAZ) in NULCB steel under laser welding conditions were investigated by using a Gleeble-1500 thermal simulator. The experimental results indicate that the simplex microstructure in the HAZ is granular bainite that consists of bainite-ferrite (BF) lath and M-A constituent when the cooling time from 800 to 500℃ (t8/5) is 0.3-30 s, and the M-A constituent consists of twinned martensite and residual austenite. As t8/5 increases, the hardness and tensile strength of HAZ decreases, but they are higher than that of the base metal, indicating the absence of softened zone after laser welding. The impact toughness of HAZ increases at first and then decreases when t8/5 increases. The impact energy of HAZ is much higher than that of the base metal when t8/5 is between 3 and 15 s. It indicates that excellent low temperature toughness can be obtained under appropriate laser welding conditions. 展开更多
关键词 ultralow carbon bainitic steel laser welding heat-affected zone microstructure mechanical properties
下载PDF
Study on local embrittlement of welding heat-affected zone in XSO pipeline steels
8
作者 郝世英 高惠临 +1 位作者 张骁勇 周勇 《China Welding》 EI CAS 2011年第2期36-40,共5页
The relationship between the microstructure and toughness of welding heat-affected zone in XSO grade pipeline steels is studied. It is found that the intercritical reheated coarse-grained heat-affected zone (ICCGHAZ... The relationship between the microstructure and toughness of welding heat-affected zone in XSO grade pipeline steels is studied. It is found that the intercritical reheated coarse-grained heat-affected zone (ICCGHAZ) of experimental steels has the lowest toughness values when the secondary peak temperature is at intercritical ( α + γ ) region during multi-pass welding. The local embrittlement is mainly attributed to the morphology, amount and size of M-A constituent. It is also found that the microstructural inhabitanee at ICCGHAZ has a deleterious effect on the toughness. On the basis of above experimental results, it is suggested that the local embrittlement should be prevented by using pre-heating thermal cycle which could eliminate the microstructural inhabitance and using post-heating thermal cycle which could improve the morphology, amount and size of MA constituent. 展开更多
关键词 X80 pipeline steel microstructure coarse-grain heat-affected zone local embrittlement
下载PDF
Microstructure and Mechanical Properties of Intercritical Heat-affected Zone of X80 Pipeline Steel in Simulated In-Service Welding 被引量:4
9
作者 Xin-Jie Di Lin Cai +2 位作者 Xi-Xue Xing Cui-Xin Chen Zhen-Kui Xue 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第7期883-891,共9页
The intercritical heat-affected zone(ICHAZ) of X80 pipeline steel was simulated by using the Gleeble-3500thermal/mechanical simulator according to the thermal cycle of in-service welding.The microstructures of ICHAZ... The intercritical heat-affected zone(ICHAZ) of X80 pipeline steel was simulated by using the Gleeble-3500thermal/mechanical simulator according to the thermal cycle of in-service welding.The microstructures of ICHAZ with different cooling rates were examined,and the hardness,the toughness and corresponding fractography were investigated.Results show that untransformed bainite and ferrite as well as retransformed fine bainite and martensite–austenite(M–A)constituents constitute the microstructure of ICHAZ.The two different morphologies of M–A constituents are stringer and block.Second phase particles which mainly composed of Ti,Nb,C,Fe and Cu coarsened in ICHAZ.Compared with normal welding condition,the toughness of ICHAZ is poor when the cooling time is short under in-service welding condition because of the large area fraction and size of M–A constituents that connect into chains and distribute at the grain boundaries.The Vickers hardness of ICHAZ that decreases with the increase in the cooling time is independent with the area fraction of M–A constituents. 展开更多
关键词 X80 pipeline steel In-service welding heat-affected zone microstructure TOUGHNESS
原文传递
Microstructure and Mechanical Properties of Simulated Heat-affected Zones of EP-823 Steel for ADS/LFR 被引量:1
10
作者 Shanping Lu Tian Liang +3 位作者 Yongkui Li Dianzhong Li Lijian Rong Yiyi Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第8期864-871,共8页
EP-823 steel is one of the candidate materials for accelerator-driven systems/lead-cooled fast reactors (ADS/LFR). Its weldability was investigated by mechanical property tests and microstructure analysis on the enl... EP-823 steel is one of the candidate materials for accelerator-driven systems/lead-cooled fast reactors (ADS/LFR). Its weldability was investigated by mechanical property tests and microstructure analysis on the enlarged heat-affected zones (HAZs) made by numerical and physical simulation. The finite element numerical simulation could simulate the welding thermal cycle of the characteristic regions in HAZs with extremely high accuracy, The physical simulation performed on a Gleeble simulator could enlarge the characteristic regions to easily investigate the relationship between the microstructure evolution and the mechanical properties of the HAZs. The results showed that the simulated partially normalized zone comprising tempered martensite, newly formed martensite and more tiny carbides has the highest impact energy. The fully normalized zone exhibits the highest hardness because of the quenched martensite and large carbides. The ductile property of the overheated zone is poor for the residual delta- ferrite phases and the quenched martensite. 展开更多
关键词 Accelerator-driven systems/lead-cooled fast reactors (ADS/LFR) EP-823 steel heat-affected zones (HAZs) microstructure evolution Mechanical property
原文传递
Changes in microstructure and properties of weld heat-affected zone of high-strength low-alloy steel
11
作者 Shu-jun Jia Qi-lin Ma +3 位作者 Yu Hou Ba Li He-song Zhang Qing-you Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第8期2041-2052,共12页
The evolution of the microstructure and toughness of APL5L X80 pipeline steel after thermal welding simulation was investigated by X-ray diffraction,electron backscatter diffraction,and transmission electron microscop... The evolution of the microstructure and toughness of APL5L X80 pipeline steel after thermal welding simulation was investigated by X-ray diffraction,electron backscatter diffraction,and transmission electron microscopy.The results indicated that primary heat-affected zones can be divided into weld,coarse-grained,fine-grained,intercritical,and sub-critical zones.The microstructure of the weld zone is mainly composed of bainitic ferrite and a small amount of granular bainite;however,the original austenite grains are distributed in the columnar grains.The structure of the coarse-grained zone is similar to that of the weld zone,but the original austenite grains are equiaxed.In contrast,the microstructure in the fine-grained zone is dominated by fine granular bainite,and the effective grain size is only 8.15μm,thus providing the highest toughness in the entire heat-affected zone.The intercritical and subcritical zones were brittle valley regions,and the microstructure was dominated by granular bainite.However,the martensite-austenite(M/A)constituents are present in island chains along the grain boundaries,and the coarse size of the M/A constituents seriously reduces the toughness.The results of the crack propagation analyzes revealed that high-angle grain boundaries can significantly slow down crack growth and change the crack direction,thereby increasing the material toughness.The impact toughness of the low-temperature tempering zone was equivalent to that of the columnar grain zone,and the impact toughness was between those of the critical and fine-grained zones. 展开更多
关键词 Welding thermal simulation Impact toughness Crack propagation Martensite-austenite constituent High-strength low-alloy steel weld heat-affected zone
原文传递
Effect of Thermal Cycle on Microstructure and Fracture Morphology in HAZ of HQ130 Steel 被引量:4
12
作者 Li Yajiang Zou Zengda +2 位作者 Cheng Zhunian Wei Xing Jiang Quanchang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1996年第2期38-43,共6页
The effect of different peak temperature(Tp) and cooling time (t8/5) on microstructure, hardness, impact toughness and fracture morphology in the heat-affected zone (HAZ) of HQ130 steel was studied by using weld therm... The effect of different peak temperature(Tp) and cooling time (t8/5) on microstructure, hardness, impact toughness and fracture morphology in the heat-affected zone (HAZ) of HQ130 steel was studied by using weld thermo-simulation test. Experimental results indicate that the impact toughness and hardness decrease with the decrease of Tpor increase of t8/5 under the condition of a single thermal cycle. There is a brittle zone in the vicinity of Tp= 800℃, where the impact toughness is considerably low. There is a softened zone in the vicinity of Tp=700℃, where the hardness decreases but the toughness increases. In the practical application of multi-layer and multipass welding, the welding heat input should be strictly limited (t8/5≤20s) so as to reduce the softness and brittleness in the HAZ of-HQ130 steel. 展开更多
关键词 high strength steel welding thermal cycle heat-affected zone microstructure impact toughness
下载PDF
Microstructure evolution of HAZ in the multi-pass underwater wet welded joints 被引量:2
13
作者 刘多 张洪涛 +2 位作者 杨轲 唐冬雁 冯吉才 《China Welding》 EI CAS 2013年第1期30-34,共5页
The microstructure evolution of heat-affected zone (HAZ) in the multi-pass underwater welded joints is investigated in the present work, and it can be characterized by four zones, marked as Region A, B, C and D, res... The microstructure evolution of heat-affected zone (HAZ) in the multi-pass underwater welded joints is investigated in the present work, and it can be characterized by four zones, marked as Region A, B, C and D, respectively. The microstructure in Region A is the mixture of lath martensite and residual austenite. Besides this structure, lots of acicular ferrite appears in Region B as well, and the grain size becomes larger. Lath ferrite combined with granular bainite is observed in Region C. In Region D, tempered sorbite, granular bainite and fine acicular ferrite are found within the grains, while massive ferrite and Widmanstatten structure are distributed along the grain boundary: The thermal effect of multi-pass welding makes the microstructure and property more and more uniform in the ttAZ, and the largest hardness 356 HV in the HAZ appears in Region A. 展开更多
关键词 microstructure heat-affected zone underwater welding hardness
下载PDF
A study on HAZ’s microstructure and grain size of 10CrNi3MoV steel
14
作者 方洪渊 魏金山 张田宏 《China Welding》 EI CAS 2003年第2期162-167,共6页
This paper deals with microstructure and grain size of HAZ of 590 MPa high strength ship-structure steel with welding simulator. While t 8/5 time is short, 10CrNi3MoV steel’s microstructure of coarse grain heat-a... This paper deals with microstructure and grain size of HAZ of 590 MPa high strength ship-structure steel with welding simulator. While t 8/5 time is short, 10CrNi3MoV steel’s microstructure of coarse grain heat-affected zone (CGHAZ) is lath martensite structure and a small amount of twined martensite structure; while t 8/5 time is long, it is mainly granular bainite structure. After second thermal cycle with peak temperature between critical temperature Ac 1′ and Ac 3′, CGHAZ has the inheritance of coarse grain and coarse microstructure. Welding energy input (determined by t 8/5 time) has an effect on the inheritance of coarse microstructure, but no influence on the inheritance of coarse grain. In detail, with a shorter t 8/5 time, there is an inheritance of coarse microstructure and grains. With a longer t 8/5 time, there is only the inheritance of coarse grains. While t 8/5 increases, the scope of temperature of causing it diminishes. Therefore, the inheritance of coarse microstructure connects with the high speed of heating and cooling. 展开更多
关键词 high strength steel heat-affected zone microstructure grain size
下载PDF
PREPARATION OF Al-Si INGOTS WITH FULL EUTECTIC-LIKE MICROSTRUCTURE AT LOW COOLING RATE
15
作者 WEI Pengyi FU Hengzhi(State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an 710072,China) W.REIF(Institute fuer Metallforshung-Metallkunde,Technische Universitaete Berlin,Strasse des 17 Juni 135,D-1000 Berlin 12,Ger 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第1期49-55,共7页
A self-designed computer-aided solidification simulation system for large-size ingots was employed to determine the eutectic coupled-zone of Al-(7-14 wt%) Si alloys at low freezing rate with a temperature gradient of ... A self-designed computer-aided solidification simulation system for large-size ingots was employed to determine the eutectic coupled-zone of Al-(7-14 wt%) Si alloys at low freezing rate with a temperature gradient of liquid on solidification interface tower than 20 K cm ̄(-1). Experimental parameters for the formation of a fully eutectic microstructure in a dia.38×70 mm ingot have been successfully obtained under various conditions for Al-(11.3 -13.0 wt%) Si alloys.Eutectic coupled growth charactersitics under this condition was also discussed. 展开更多
关键词 Al-Si alloy eutectic-like microstructure solidification simulation coupled-zone
下载PDF
Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater 被引量:7
16
作者 Yong Li Zhiyong Liu +3 位作者 Endian Fan Yunhua Huang Yi Fan Bojie Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第5期141-152,共12页
In this work,the stress corrosion cracking(SCC)behavior of E690 steel base metal(BM)and different heat-affected zone(HAZ)microstructures,i.e.,coarse grain HAZ(CGHAZ),fine grain HAZ(FGHAZ),and intercritical HAZ(ICHAZ),... In this work,the stress corrosion cracking(SCC)behavior of E690 steel base metal(BM)and different heat-affected zone(HAZ)microstructures,i.e.,coarse grain HAZ(CGHAZ),fine grain HAZ(FGHAZ),and intercritical HAZ(ICHAZ),was investigated at different cathodic potentials in artificial seawater by slow strain rate tensile tests,scanning electron microscopy and electron back-scattered diffraction measurements.The results show that the HAZ microstructures and BM exhibit different SCC susceptibilities:FGHAZ<ICHAZ<BM<CGHAZ,which are controlled by anodic dissolution(AD)at the open circuit potential.With the cathodic potential equaling to-750 mV,the SCC susceptibility of the four microstructures increases because of the synergistic effect of AD and weak hydrogen embrittlement(HE).At-850 mV,AD is inhibited,and the SCC susceptibility of BM decreases,while the SCC susceptibility of the HAZ microstructures increases.At a potential below-850 mV,the SCC susceptibility of the four microstructures gradually increases because of the augment of HE,and the SCC susceptibility of the HAZ microstructures is higher than that of BM.The distinction reveals that the HAZ microstructures have the greater HE susceptibility than BM. 展开更多
关键词 Low-carbon bainite steel heat-affected zone microstructure Cathodic potential Stress corrosion cracking Hydrogen embrittlement
原文传递
Microstructure transformation of X70 pipeline steel welding heat-affected zone 被引量:5
17
作者 Hui Li Jing-Long Liang +1 位作者 Yun-Li Feng Dong-Xing Huo 《Rare Metals》 SCIE EI CAS CSCD 2014年第4期493-498,共6页
The continuous cooling transformation curve of heat-affected zone (HAZ) of X70 pipeline steel was mea- sured by Gleeble-3500 thermal mechanical simulator, optical microscope (OM) and hardness analysis. The microst... The continuous cooling transformation curve of heat-affected zone (HAZ) of X70 pipeline steel was mea- sured by Gleeble-3500 thermal mechanical simulator, optical microscope (OM) and hardness analysis. The microstructure transformation rule at different cooling rates and solution behaviors of microalloy carbonitride during heating process of simulated specimens were investigated. When the cooling rate changes from 10 to 20 ℃.s-l, microstructures at HAZ are identified as granular bainite, lathy bainite, and quasi-polygonal ferrite. This micro- structure is featured with fine ferrite grains, martensite/ austenite islands dispersed, high-density dislocations, and fine carbonitride particles, resulting in improving the strength and toughness of HAZ. With the cooling rate increasing to above 40 ℃.s-1, the microstructure is pre- dominantly coarse lathy bainite with clear primary aus- tenite grain boundary. While the cooling rate decreases to below 1 ℃.s-1, a fairly small amount of pearlite can be observed at the boundaries. The strength and toughness of HAZ are deteriorated because of coarse grains among these microstructures. Most of microalloy carbonitrides in HAZ could be dissolved in the matrix during heating process. A few of TiN particles existing as residues in the matrix can prevent austenite grain from growing, and then improve the strength and toughness of HAZ. 展开更多
关键词 X70 pipeline steel heat-affected zone microstructure transformation Acicular ferrite
原文传递
Influence of Ca treatment on particle-microstructure relationship in heat-affected zone of shipbuilding steel with Zr-Ti deoxidation after high-heat-input welding 被引量:1
18
作者 Hong-bo Liu Ju Kang +7 位作者 Xiu-juan Zhao Cai-dong Zhang Zhang-guo Lin Hong-yong Yao Zhi-qiang Tian Zhan-li Liu Jie Li Chao Li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2022年第8期1291-1298,共8页
The effects of Ca treatment on the particle, microstructure, and toughness of heat-affected zone (HAZ) of shipbuilding steel with Zr-Ti deoxidation after high-heat-input welding were investigated. The simulated weldin... The effects of Ca treatment on the particle, microstructure, and toughness of heat-affected zone (HAZ) of shipbuilding steel with Zr-Ti deoxidation after high-heat-input welding were investigated. The simulated welding at a high-heat-input welding of 200 kJ/cm was carried out using Gleeble-3800 welding simulation. Then, particle characteristics were characterized using an Aztec-Feature automatic particle analysis system. Additionally, an in-situ observation experiment was performed to study the relationships between particle and microstructure by high-temperature confocal laser scanning microscopy (HT-CLSM). The results indicated that the average HAZ toughness at -40 ℃ was increased from 183 to 290 J by adding 0.0026 wt.% Ca. Meanwhile, the formation of acicular ferrite ratio was increased from 49.34% to 60.28% due to the addition of Ca. The scanning electron microscopy results clearly showed that CaO-Al_(2)O_(3)-TiOx-ZrO_(2)-MnS particles could act as effective nucleation sites for the formation of acicular ferrite, which has been verified by the observation of the particle-microstructure relationship under HT-CLSM. Furthermore, particle characterization results show that the cumulative frequency of particles with the size of 1-3 lm was 33.2% in HAZ of Zr-Ti shipbuilding steel but 66.2% in HAZ of Zr-Ti-Ca shipbuilding steel. 展开更多
关键词 Shipbuilding steel heat-affected zone Impact toughness microstructure Particle characterization
原文传递
Influence of Welding Thermal Cycle on Microstructure and Properties in Heat-affected Zone of X80 Pipeline Steel
19
作者 Deng Wei, Gao Xiuhua, Qin Xiaomei, Zhao Dewen, Du Linxiu State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第S3期123-127,共5页
Single welding thermal–cycles with different input linear energies (ILE)(15, 20, 30, 40, 50 kJ/cm) and peak temperatures (PT) (900, 1050, 1200, 1300, 1350 ℃) were simulated by MMS-300 to study the correlation of tou... Single welding thermal–cycles with different input linear energies (ILE)(15, 20, 30, 40, 50 kJ/cm) and peak temperatures (PT) (900, 1050, 1200, 1300, 1350 ℃) were simulated by MMS-300 to study the correlation of toughness and microstructure in heat-affected zone (HAZ) of a X80 pipeline. The evolution characteristics of microstructure were investigated by OM, SEM and EBSD. The results show that numerous polygonal ferrites and grain boundary ferrites appear, and the sizes apparently decrease as the heat input decreases. Heat input in single welding should be less than 35 kJ/cm to ensure well Charpy impact toughness. The toughness of course grain zone is the lowest when welding heating temperature is 1350 ℃ and it is the weakness part in welded zone. The uniformity of prior austenite grain is worsened as increasing the heat input. Moreover, the characteristics of M-A constituents and high angle grain boundaries (HAGB) are influenced by heat input and PT. In the case of low heat input and PT, higher density of HAGBs, dispersed and fine M-A constituents were observed. Otherwise, with high heat input (≥40 kJ/cm), the effective grain size is almost the diameter of prior austenite grain, and it will decrease the density of HAGB, moreover, coarse M-A constituents which are prone to crack initiation will be generated, thus, the impact toughness of the coarse grain zone will be worsened obviously in welding HAZ. 展开更多
关键词 X80 PIPELINE steel WELDING simulation heat-affected zone impact TOUGHNESS
原文传递
Effect of Heat Input on Cleavage Crack Initiation of Simulated Coarse Grain Heat-affected Zone in Microalloyed Offshore Platform Steel
20
作者 Feng LU Guang-ping CHENG +4 位作者 Feng CHAI Tao PAN Zhong-ran SHI Hang SU Cai-fu YANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第10期1086-1095,共10页
The combined effects of martensite-austenite(MA)constituent and pearlite colony on cleavage crack initiation in the simulated coarse-grained heat-affected zone(CGHAZ)of V-N-Ti microalloyed offshore platform steel ... The combined effects of martensite-austenite(MA)constituent and pearlite colony on cleavage crack initiation in the simulated coarse-grained heat-affected zone(CGHAZ)of V-N-Ti microalloyed offshore platform steel under different heat inputs were investigated.The results of welding simulation,instrumented impact test,and quantitative analysis indicated that the size of the MA constituent decreased with the increase in cooling time,and by contrast,the size of the pearlite colony increased.According to Griffith theory,the critical sizes of cleavage microcracks were calculated.With the increase of cooling time,the calculated microcrack size could be characterized by the size of the MA constituent first,and then fitted with the size of the pearlite colony.Moreover,the calculated microcrack size variation was opposite to the microcrack initiation energy.This phenomenon is probably due to the combined effects of the MA constituent and pearlite colony with increasing the cooling time of the specimen′s temperature from800 to 500 ℃. 展开更多
关键词 simulated coarse-grained heat-affected zone martensite-austenite constituent pearlite colony cleavage fracture V-N-Ti microaltoying
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部