The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water th...The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method.展开更多
In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow ...In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm; a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.展开更多
This paper presented a preliminary research on the central solar heating system with seasonal storage(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in t...This paper presented a preliminary research on the central solar heating system with seasonal storage(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was followed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which decreases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition,the relationship between the solar collector efficiency and storage water temperature is also obtained,it decreases quickly with increasing storing water temperature,and then increases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.展开更多
The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a...The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a fare precision in the predictions. By using the model of solid liquid two phase flow, the gas storage tank, pressure relief valves and slow closure reverse control valves were compared with practical engineering problems, and the functions of gas storage tank in attenuating water hammer pressure were further investigated. [展开更多
Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (P...Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (PIV) visualization technique. In the neutral stratification approach flow, the ascending draft induced by bottom heating is mainly located in the center of the valley in calm ambient wind. However, with ambient wind flow, the thermal convection is shifted leeward, and the descending draft is located on the leeward side of the valley, while the ascending draft is located on the windward side. The descending draft is minorly turbulent and organized, while the ascending draft is highly turbulent. With the increase of the towing speed, the descending and ascending drafts induced by the mechanical elevation begin to play a more dominant role in the valley flow, while the role of the thermal convection in the valley airflow becomes limited. In the stable stratification approach flow, the thermal convection is limited by the stable stratification and no distinct circulation is formed in calm ambient wind. With ambient wind, agravity wave appears in the upper layer in the valley. With the increase of the ambient wind speed, a gravity wave plays an important role in the valley flow, and the location and intensity of the thermal convection are also modulated by the gravity internal waves. The thermal convection has difficulty penetrating the upper stable layer. Its exchange is limited between the air in the upper layer and that in the lower layer in the valley, and it is adverse to the diffusion of pollutants in the valley.展开更多
The overall purpose of this research is to examine the impact of untreated sedimentation tank sludge water( USTSW) recycle on water quality during treatment of low turbidity water in coagulation—sedimentation process...The overall purpose of this research is to examine the impact of untreated sedimentation tank sludge water( USTSW) recycle on water quality during treatment of low turbidity water in coagulation—sedimentation processes. 950 m L of raw water and different concentrations of 50 m L USTSW are injected into six 1 000 m L beakers without coagulant.The results indicate that USTSW characterized as accumulated suspended solids and organic matter has active ingredients,which possess the equivalent function of coagulant. The optimal blended water turbidity is in the range of 10-20 NTU,within which USTSW recycle achieves the highest save coagulant rate. The mechanism of strengthening coagulation effect when USTSW recycle mainly depends on the chemical effect and physical effect. What is more,through scanning electron microscopy( SEM),it is found that the floc structures with USTSW recycle are more compact than those without USTSW recycle. Besides,the water quality parameters of color,NH3-N,CODMn,UV254,total aluminum,total manganese when USTSW recycle is better than the raw water without recycle,indicating that USTSW recycle can improve water quality with strengthening coagulation effect.展开更多
Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to cat...Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to categorize the damage in quantifiable damage states. Among various parameters to quantify the damage states, the top drift of frame staging can be conveniently correlated to the different damage levels. In literature, drift limits corresponding to different damage states of the frame staging of the elevated water tank are not available. In the present study, drift limits for RC frame staging in elevated water tanks corresponding to different seismic damage states have been proposed. Various damage states of the elevated water tank have been determined using the Park and Ang damage index. The Park and Ang damage index utilizes results of both pushover analysis and incremental dynamic analysis. Twelve models of elevated water tanks have been developed considering variation in staging height and tank capacity. Incremental dynamic analysis has been performed using the suite of twelve actual earthquake ground motions. Based on the regression analysis between damage indexes and drift, limiting drift values for each damage state are proposed.展开更多
Liquid sloshing is a common phenomenon in the transportation of liquid-cargo tanks.Liquid waves lead to fluctuating forces on the tank walls.If these fluctuations are not predicted or controlled,for example,by using b...Liquid sloshing is a common phenomenon in the transportation of liquid-cargo tanks.Liquid waves lead to fluctuating forces on the tank walls.If these fluctuations are not predicted or controlled,for example,by using baffles,they can lead to large forces and momentums.The volume of fluid(VOF)two-phase numerical model in Open FOAM open-source software has been widely used to model the liquid sloshing.However,a big challenge for modeling the sloshing phenomenon is selecting a suitable turbulence model.Therefore,in the present study,different turbulence models were studied to determine their sloshing phenomenon prediction accuracies.The predictions of these models were validated using experimental data.The turbulence models were ranked by their mean error in predicting the free surface behaviors.The renormalization group(RNG)k-ε and the standard k–ω models were found to be the best and worst turbulence models for modeling the sloshing phenomena,respectively;moreover,the SST k-ω model and v2-f k-ε results were very close to the RNG k-εmodel result.展开更多
This paper studies the free bending vibration of cylindrical tank partially filled with liquid and submerged in water. The depths of liquid and water may be completely arbitrary. The exact calculating formulae of mode...This paper studies the free bending vibration of cylindrical tank partially filled with liquid and submerged in water. The depths of liquid and water may be completely arbitrary. The exact calculating formulae of mode shape functions and inherent frequencies are deduced. The results can be gained by means of computer. The analysis shows that the effect of liquid and water on vibration of cylindrical tank is respectively equivalent to a generalized distributive mass attached to the tank.展开更多
For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention....For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.展开更多
Tank Cascade Systems(TCS)are the back bone of the dry zone prosperity in Sri Lanka and supply water throughout the year to agricultural lands since the 2nd century BC.The main aim of this study was to understand the n...Tank Cascade Systems(TCS)are the back bone of the dry zone prosperity in Sri Lanka and supply water throughout the year to agricultural lands since the 2nd century BC.The main aim of this study was to understand the nutrient dynamics of small TCS and find out evidence for the sustainability of the system for thousands of years.Malagane tank cascade in the Deduru Oya Basin(the 5th largest river basin展开更多
The problem of water supply from the public distribution network still poses very serious problems in many cities in developing countries. Intermittent water supply pushes some households to build underground reinforc...The problem of water supply from the public distribution network still poses very serious problems in many cities in developing countries. Intermittent water supply pushes some households to build underground reinforced concrete tanks for water storage to cope with unwanted water breaks. This study that relies on the results of a survey of households in some areas of the city of Brazzaville (Republic of Congo) aims to verify the importance that users attach to the quality of the works constructed. Indeed, the reliability of the tanks resulting in their impermeability to the external environment has a direct impact on the quality of stored water and therefore the use that is made of water daily. Five areas were selected because of their soil moisture. By 256 tanks identified, 143 are made of reinforced concrete and 113 in masonry. The coating materials used to seal the walls are preferably the earthenware tiles (64% of tanks), then the Sika cement (31%). Food painting (5%) is only rarely used. However, 66% of households are not assured of the potability of the water stored. A significant number of households (46%) think that the stored water could be contaminated with noxious substances seeping from the outside through the walls of the tanks. The issue of sealing of underground water tanks, especially in areas where the water table is shallow, seems concerned users.展开更多
In 1453,Xu Youzhen,a scholar-bureaucrat and hydrologist in Ming China,was dispatched to Shandong to find a way to harness the Yellow River.He proposed the opening up of multiple channels to diverge the flood waters.An...In 1453,Xu Youzhen,a scholar-bureaucrat and hydrologist in Ming China,was dispatched to Shandong to find a way to harness the Yellow River.He proposed the opening up of multiple channels to diverge the flood waters.An experiment was conducted to compare the efficiency of releasing water using one large opening with the use of a number of small openings.This experiment proved that opening up multiple channels outperformed the construction of only one,thereby convincing the emperor and officials of the efficacy of this method.Xu’s method for water control proved to be successful in averting a flood that occurred in 1456.展开更多
A case of household water tanks, 1000 L capacity, made of RCC, LLDPE and mild steel (stainless steel) was evaluated for life cycle analysis. The scope of the research comprised of the raw materials, energy inputs and ...A case of household water tanks, 1000 L capacity, made of RCC, LLDPE and mild steel (stainless steel) was evaluated for life cycle analysis. The scope of the research comprised of the raw materials, energy inputs and corresponding emissions during all phases of product making such as extraction of raw material, it’s processing, followed by manufacturing and transport, as well as use and reuse of the product. Simapro 8 (System for Integrated environMental Assessment of PROducts), a modelling software, from Dutch PRé Consultants was used to conduct the life cycle analysis. Simapro 8 enables systematic and transparent modelling and analysis of complex life cycles based on the recommendations of the ISO 14040 series of standards. In the present study the most common method which is acceptable worldwide “Recipe Endpoint method” (ReCiPe) was employed. ReCiPe computes the impact categories and classifies them into two classes based on relevant arrays of characterization factors. Simapro addresses impact categories viz. ozone depletion, human toxicity, ionizing radiation, photochemical oxidant formation, particulate matter formation, terrestrial acidification, climate change, terrestrial ecotoxicity, agricultural land occupation, urban land occupation, natural land transformation, marine ecotoxicity, marine eutrophication, fresh water eutrophication, fresh water ecotoxicity, fossil fuel depletion, minerals depletion, fresh water depletion at the midpoint level. While at the Endpoint level, the impact categories are multiplied by corresponding damage factors and integrated to be represented as three Endpoint level categories, viz. human health, ecosystems and resource depletion. The three endpoint categories are normalized, weighted, and aggregated into a single score. LCA studies indicate that household water tanks of LLDPE have least environmental implications considering impacts on human health, ecosystems and resource depletion as compared to its counterparts viz. Household water tanks made up of mild steel and RCC. The sequence of the material with decreasing impacts is concrete tanks > mild steel tank > LLDPE tanks. The overall assessment is centred on the elements such as material inputs, energy inputs and environmental emissions.展开更多
Ozone is the principal active substances and usually employed in ballast water management systems. In the present study, the corrosion protective effect of ozone was conducted by immersion test and electrochemical tec...Ozone is the principal active substances and usually employed in ballast water management systems. In the present study, the corrosion protective effect of ozone was conducted by immersion test and electrochemical techniques. It was found that corrosion protective effect was revealed in the range of 2.0 to 2.7 ppm of ozone concentration in seawater. The ratio of the rust area of specimen became 20% in that concentration region. The rusted area is strongly influenced by the ozone concentration and the flow rate determined by FEM (finite element method). Ozone has a good influence for ballast tanks, i.e., ozone can delay the rust of ballast tanks, provided that the suitable concentration of ozone is selected. In this case, ozone may stop the corrosion at the defects, if a part of the paint in ballast tank is peeled off. However, ozone may also promote the corrosion of steel when the ozone concentration is very high, e.g., 10 ppm. Attention should be paid to the ozone concentration, if we use ozone as an active substance for ballast water management systems.展开更多
Tank cascade system(TCS)is a series of tanks located in a meso-catchment and has been accepted as a Globally Important Agricultural Heritage System found in Sri Lanka.Ecosystem components of the TCS play a major role ...Tank cascade system(TCS)is a series of tanks located in a meso-catchment and has been accepted as a Globally Important Agricultural Heritage System found in Sri Lanka.Ecosystem components of the TCS play a major role in purifying water within the system.This study attempted to investigate the water quality status and the farmers’willingness to rehabilitate the ecosystem components of the Thirappane TCS.Drinking and irrigation water quality parameters were tested in 34 locations and drinking and irrigation water quality indexes were calculated.Participatory rural appraisal and a questioner survey were conducted to gather social data.Water of TCS was observed to be appropriate for irrigation but not for drinking during the Maha cropping season.Based on the results of the Nitrate(as NO_(3)^(-))and Total Phosphate(as PO_(4)^(3-)),water of TCS can be categorized as eutrophic.Presence of ecosystem features of tank cascade system,annual income of the respondents,satisfaction on the quality of water for drinking,and the awareness about the tank cascade system significantly influenced the participatory decisions of the community on the rehabilitation of TCS.This study shall be an example and an eye opener to formulate sustainable tank cascade management plan.展开更多
There is a global trend for seismic response improvement of new buildings to reduce cost and future damage. It is also important to improve existing structures that are designed without consideration of seismic load o...There is a global trend for seismic response improvement of new buildings to reduce cost and future damage. It is also important to improve existing structures that are designed without consideration of seismic load or using old provisions that cannot meet the new one. The objective of this paper is to draw attention to evaluate existing reinforced concrete school buildings, then to present a proposed methodology to improve the behaviour of such schools with low cost especially in a developing country. The proposed method uses overhead water tanks as a tuned mass damper. A pushover analysis has been performed to evaluate the existing schools and perform a feasibility study to select the best solution to achieve seismic response improvement of the existing structure. Of course, the proposed methodology can be applied easily to other existing structures.展开更多
Vessels with semi-closed tanks(i.e.,well docks)are widely applied in the military operation and maritime engineer-ing.The water is bound by the semi-closed floating tank and forced by both the incident waves and ship...Vessels with semi-closed tanks(i.e.,well docks)are widely applied in the military operation and maritime engineer-ing.The water is bound by the semi-closed floating tank and forced by both the incident waves and ship’s motions.The free surface oscillations inside the flooded well dock is thus distinctive and very complicated.So far,the natural modes of semi-closed floating tanks have not yet been studied.This paper investigates the characteristics of natural modes of a floating semi-closed tank by combining a mode-resolving model based on mild-slope equations and a hydrodynamic model based on computational fluid dynamics.Results show that the first three natural periods(i.e.,74,23.6,and 14 s)of the tank fall into the band of swell and infragravity waves and they could be triggered under certain circumstance.Multi-period free surface oscillations are observed inside the tank,including the longest natural period(i.e.,74 s),though the incident waves are monochromatic.A possible generation mechanism for the long-period mode is explained on the basis of liquid sloshing and harbor oscillations.Moreover,a long-period component with a period close to the natural mode of well dock is observed in the ship motions,which is generated by the interaction between the waves and ship.展开更多
Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is...Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price.展开更多
文摘The populations of urban centers in Congo-Brazzaville have decided to develop various methods of water storage (concrete or masonry underground tanks) for domestic use, due to shortages in the distribution of water through the public network. However, questions remain as to the physico-chemical quality of the water stored in these tanks, when these structures are built in wet and relatively polluted areas. This paper presents a model of pollutant diffusion through the cementitious matrix (concrete) of tank walls simulated at a buried reservoir. The results of the experimental and numerical simulations show that certain concrete parameters, such as porosity, permeability and diffusivity, have a significant influence on the transfer of pollutants through the concrete walls, thus altering the physico-chemical quality of the stored water. The numerical models (1D) used to predict pollutant transfer and the quality of the stored water are consistent with those of the optimal control for identifying the diffusion coefficient. Major ion concentrations appear to be correlated with system porosity and diffusion coefficient. Nevertheless, the identification of the diffusion coefficient from the optimal control method, based on an explicit numerical resolution of a finite volume PDE for the approximation of the experiment, is not consistent with that of the optimal control method.
基金Project (No. 50078048) supported by the National Natural Science Foundation of China
文摘In view of the poor water supply system’s network properties, the system’s complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm; a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.
基金Supported by Multi-Discipline Scientific Rearch Foundation of Harbin Institute of Technology(HIT MD2003.1)Postdoctoral Scientific Rearch Foundation of Heilongjiang Provine(LBH-Q06066)
文摘This paper presented a preliminary research on the central solar heating system with seasonal storage(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was followed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which decreases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition,the relationship between the solar collector efficiency and storage water temperature is also obtained,it decreases quickly with increasing storing water temperature,and then increases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.
文摘The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a fare precision in the predictions. By using the model of solid liquid two phase flow, the gas storage tank, pressure relief valves and slow closure reverse control valves were compared with practical engineering problems, and the functions of gas storage tank in attenuating water hammer pressure were further investigated. [
基金This research was supported by the National Natural Science Foundation of China under Grant Nos.40105003 and 4001161948partly supported by the Chinese Academny of Sciences Projct KZCX-201.
文摘Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (PIV) visualization technique. In the neutral stratification approach flow, the ascending draft induced by bottom heating is mainly located in the center of the valley in calm ambient wind. However, with ambient wind flow, the thermal convection is shifted leeward, and the descending draft is located on the leeward side of the valley, while the ascending draft is located on the windward side. The descending draft is minorly turbulent and organized, while the ascending draft is highly turbulent. With the increase of the towing speed, the descending and ascending drafts induced by the mechanical elevation begin to play a more dominant role in the valley flow, while the role of the thermal convection in the valley airflow becomes limited. In the stable stratification approach flow, the thermal convection is limited by the stable stratification and no distinct circulation is formed in calm ambient wind. With ambient wind, agravity wave appears in the upper layer in the valley. With the increase of the ambient wind speed, a gravity wave plays an important role in the valley flow, and the location and intensity of the thermal convection are also modulated by the gravity internal waves. The thermal convection has difficulty penetrating the upper stable layer. Its exchange is limited between the air in the upper layer and that in the lower layer in the valley, and it is adverse to the diffusion of pollutants in the valley.
基金Sponsored by the Major Science and Technology Program for Water Pollution Control and Treatment(Grant No.2012ZX07408001,2014AX07405002)the National Science Foundation of China(Grant No.51108118)
文摘The overall purpose of this research is to examine the impact of untreated sedimentation tank sludge water( USTSW) recycle on water quality during treatment of low turbidity water in coagulation—sedimentation processes. 950 m L of raw water and different concentrations of 50 m L USTSW are injected into six 1 000 m L beakers without coagulant.The results indicate that USTSW characterized as accumulated suspended solids and organic matter has active ingredients,which possess the equivalent function of coagulant. The optimal blended water turbidity is in the range of 10-20 NTU,within which USTSW recycle achieves the highest save coagulant rate. The mechanism of strengthening coagulation effect when USTSW recycle mainly depends on the chemical effect and physical effect. What is more,through scanning electron microscopy( SEM),it is found that the floc structures with USTSW recycle are more compact than those without USTSW recycle. Besides,the water quality parameters of color,NH3-N,CODMn,UV254,total aluminum,total manganese when USTSW recycle is better than the raw water without recycle,indicating that USTSW recycle can improve water quality with strengthening coagulation effect.
文摘Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to categorize the damage in quantifiable damage states. Among various parameters to quantify the damage states, the top drift of frame staging can be conveniently correlated to the different damage levels. In literature, drift limits corresponding to different damage states of the frame staging of the elevated water tank are not available. In the present study, drift limits for RC frame staging in elevated water tanks corresponding to different seismic damage states have been proposed. Various damage states of the elevated water tank have been determined using the Park and Ang damage index. The Park and Ang damage index utilizes results of both pushover analysis and incremental dynamic analysis. Twelve models of elevated water tanks have been developed considering variation in staging height and tank capacity. Incremental dynamic analysis has been performed using the suite of twelve actual earthquake ground motions. Based on the regression analysis between damage indexes and drift, limiting drift values for each damage state are proposed.
文摘Liquid sloshing is a common phenomenon in the transportation of liquid-cargo tanks.Liquid waves lead to fluctuating forces on the tank walls.If these fluctuations are not predicted or controlled,for example,by using baffles,they can lead to large forces and momentums.The volume of fluid(VOF)two-phase numerical model in Open FOAM open-source software has been widely used to model the liquid sloshing.However,a big challenge for modeling the sloshing phenomenon is selecting a suitable turbulence model.Therefore,in the present study,different turbulence models were studied to determine their sloshing phenomenon prediction accuracies.The predictions of these models were validated using experimental data.The turbulence models were ranked by their mean error in predicting the free surface behaviors.The renormalization group(RNG)k-ε and the standard k–ω models were found to be the best and worst turbulence models for modeling the sloshing phenomena,respectively;moreover,the SST k-ω model and v2-f k-ε results were very close to the RNG k-εmodel result.
文摘This paper studies the free bending vibration of cylindrical tank partially filled with liquid and submerged in water. The depths of liquid and water may be completely arbitrary. The exact calculating formulae of mode shape functions and inherent frequencies are deduced. The results can be gained by means of computer. The analysis shows that the effect of liquid and water on vibration of cylindrical tank is respectively equivalent to a generalized distributive mass attached to the tank.
基金supported by the National Natural Science Foundation of China(Grants No.52179062 and 51879087).
文摘For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.
文摘Tank Cascade Systems(TCS)are the back bone of the dry zone prosperity in Sri Lanka and supply water throughout the year to agricultural lands since the 2nd century BC.The main aim of this study was to understand the nutrient dynamics of small TCS and find out evidence for the sustainability of the system for thousands of years.Malagane tank cascade in the Deduru Oya Basin(the 5th largest river basin
文摘The problem of water supply from the public distribution network still poses very serious problems in many cities in developing countries. Intermittent water supply pushes some households to build underground reinforced concrete tanks for water storage to cope with unwanted water breaks. This study that relies on the results of a survey of households in some areas of the city of Brazzaville (Republic of Congo) aims to verify the importance that users attach to the quality of the works constructed. Indeed, the reliability of the tanks resulting in their impermeability to the external environment has a direct impact on the quality of stored water and therefore the use that is made of water daily. Five areas were selected because of their soil moisture. By 256 tanks identified, 143 are made of reinforced concrete and 113 in masonry. The coating materials used to seal the walls are preferably the earthenware tiles (64% of tanks), then the Sika cement (31%). Food painting (5%) is only rarely used. However, 66% of households are not assured of the potability of the water stored. A significant number of households (46%) think that the stored water could be contaminated with noxious substances seeping from the outside through the walls of the tanks. The issue of sealing of underground water tanks, especially in areas where the water table is shallow, seems concerned users.
文摘In 1453,Xu Youzhen,a scholar-bureaucrat and hydrologist in Ming China,was dispatched to Shandong to find a way to harness the Yellow River.He proposed the opening up of multiple channels to diverge the flood waters.An experiment was conducted to compare the efficiency of releasing water using one large opening with the use of a number of small openings.This experiment proved that opening up multiple channels outperformed the construction of only one,thereby convincing the emperor and officials of the efficacy of this method.Xu’s method for water control proved to be successful in averting a flood that occurred in 1456.
文摘A case of household water tanks, 1000 L capacity, made of RCC, LLDPE and mild steel (stainless steel) was evaluated for life cycle analysis. The scope of the research comprised of the raw materials, energy inputs and corresponding emissions during all phases of product making such as extraction of raw material, it’s processing, followed by manufacturing and transport, as well as use and reuse of the product. Simapro 8 (System for Integrated environMental Assessment of PROducts), a modelling software, from Dutch PRé Consultants was used to conduct the life cycle analysis. Simapro 8 enables systematic and transparent modelling and analysis of complex life cycles based on the recommendations of the ISO 14040 series of standards. In the present study the most common method which is acceptable worldwide “Recipe Endpoint method” (ReCiPe) was employed. ReCiPe computes the impact categories and classifies them into two classes based on relevant arrays of characterization factors. Simapro addresses impact categories viz. ozone depletion, human toxicity, ionizing radiation, photochemical oxidant formation, particulate matter formation, terrestrial acidification, climate change, terrestrial ecotoxicity, agricultural land occupation, urban land occupation, natural land transformation, marine ecotoxicity, marine eutrophication, fresh water eutrophication, fresh water ecotoxicity, fossil fuel depletion, minerals depletion, fresh water depletion at the midpoint level. While at the Endpoint level, the impact categories are multiplied by corresponding damage factors and integrated to be represented as three Endpoint level categories, viz. human health, ecosystems and resource depletion. The three endpoint categories are normalized, weighted, and aggregated into a single score. LCA studies indicate that household water tanks of LLDPE have least environmental implications considering impacts on human health, ecosystems and resource depletion as compared to its counterparts viz. Household water tanks made up of mild steel and RCC. The sequence of the material with decreasing impacts is concrete tanks > mild steel tank > LLDPE tanks. The overall assessment is centred on the elements such as material inputs, energy inputs and environmental emissions.
文摘Ozone is the principal active substances and usually employed in ballast water management systems. In the present study, the corrosion protective effect of ozone was conducted by immersion test and electrochemical techniques. It was found that corrosion protective effect was revealed in the range of 2.0 to 2.7 ppm of ozone concentration in seawater. The ratio of the rust area of specimen became 20% in that concentration region. The rusted area is strongly influenced by the ozone concentration and the flow rate determined by FEM (finite element method). Ozone has a good influence for ballast tanks, i.e., ozone can delay the rust of ballast tanks, provided that the suitable concentration of ozone is selected. In this case, ozone may stop the corrosion at the defects, if a part of the paint in ballast tank is peeled off. However, ozone may also promote the corrosion of steel when the ozone concentration is very high, e.g., 10 ppm. Attention should be paid to the ozone concentration, if we use ozone as an active substance for ballast water management systems.
文摘Tank cascade system(TCS)is a series of tanks located in a meso-catchment and has been accepted as a Globally Important Agricultural Heritage System found in Sri Lanka.Ecosystem components of the TCS play a major role in purifying water within the system.This study attempted to investigate the water quality status and the farmers’willingness to rehabilitate the ecosystem components of the Thirappane TCS.Drinking and irrigation water quality parameters were tested in 34 locations and drinking and irrigation water quality indexes were calculated.Participatory rural appraisal and a questioner survey were conducted to gather social data.Water of TCS was observed to be appropriate for irrigation but not for drinking during the Maha cropping season.Based on the results of the Nitrate(as NO_(3)^(-))and Total Phosphate(as PO_(4)^(3-)),water of TCS can be categorized as eutrophic.Presence of ecosystem features of tank cascade system,annual income of the respondents,satisfaction on the quality of water for drinking,and the awareness about the tank cascade system significantly influenced the participatory decisions of the community on the rehabilitation of TCS.This study shall be an example and an eye opener to formulate sustainable tank cascade management plan.
文摘There is a global trend for seismic response improvement of new buildings to reduce cost and future damage. It is also important to improve existing structures that are designed without consideration of seismic load or using old provisions that cannot meet the new one. The objective of this paper is to draw attention to evaluate existing reinforced concrete school buildings, then to present a proposed methodology to improve the behaviour of such schools with low cost especially in a developing country. The proposed method uses overhead water tanks as a tuned mass damper. A pushover analysis has been performed to evaluate the existing schools and perform a feasibility study to select the best solution to achieve seismic response improvement of the existing structure. Of course, the proposed methodology can be applied easily to other existing structures.
基金supported by the National Natural Science Foundation of China(Grant No.51979029)。
文摘Vessels with semi-closed tanks(i.e.,well docks)are widely applied in the military operation and maritime engineer-ing.The water is bound by the semi-closed floating tank and forced by both the incident waves and ship’s motions.The free surface oscillations inside the flooded well dock is thus distinctive and very complicated.So far,the natural modes of semi-closed floating tanks have not yet been studied.This paper investigates the characteristics of natural modes of a floating semi-closed tank by combining a mode-resolving model based on mild-slope equations and a hydrodynamic model based on computational fluid dynamics.Results show that the first three natural periods(i.e.,74,23.6,and 14 s)of the tank fall into the band of swell and infragravity waves and they could be triggered under certain circumstance.Multi-period free surface oscillations are observed inside the tank,including the longest natural period(i.e.,74 s),though the incident waves are monochromatic.A possible generation mechanism for the long-period mode is explained on the basis of liquid sloshing and harbor oscillations.Moreover,a long-period component with a period close to the natural mode of well dock is observed in the ship motions,which is generated by the interaction between the waves and ship.
基金supported by the Carbon Peak and Carbon Neutralization Science and Technology Innovation Special Fund of Jiangsu Province,China(No.BE2022859)Natural Science Foundation of Guangdong Province,China(No.2021A1515011763).
文摘Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price.