The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte...The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.展开更多
Paper documents experience severe acidification and embrittlement.Nanocellulose is an excellent reinforcement material for paper documents owing to its compatibility and excellent mechanical strength.However,little re...Paper documents experience severe acidification and embrittlement.Nanocellulose is an excellent reinforcement material for paper documents owing to its compatibility and excellent mechanical strength.However,little research has been conducted on the aging resistance of nanocellulose-reinforced paper.In this study,six types of nanocelluloses were used to reinforce aged paper.The reinforcement and anti-aging performances were evaluated,and the anti-aging mechanism was further clarified.Nanocellulose with a high degree of polymerization can better enhance aged paper,and non-chemical nanocellulose also shows better anti-aging performance,such as nanocellulose prepared by mechanical or biological methods.However,nanocellulose prepared using chemical methods exhibits poor reinforcement and anti-aging performance.This is because it has a small particle size that is not beneficial for physical crosslinking with paper fibers.More importantly,the introduction of acidic or oxidizing groups on nanocellulose accelerates the acid hydrolysis and oxidation rate of paper fibers,especially nanocellulose prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl oxidation,which should not be used to protect paper documents.展开更多
In order to develop economically anti-ultraviolet(UV) aging additives to bitumen and extend the comprehensive utilization of lignin materials, lignosulfonate(LS) was selected to intercalate into layered double hydroxi...In order to develop economically anti-ultraviolet(UV) aging additives to bitumen and extend the comprehensive utilization of lignin materials, lignosulfonate(LS) was selected to intercalate into layered double hydroxides(LDHs), then the LS intercalated LDHs(LS-LDHs) were applied to improve UV aging resistance of bitumen. With the characterization of X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, chemical analysis and scanning electron microscopy(SEM), LS was successfully intercalated into the galleries of LDHs. The ultraviolet and visible(UV-vis) absorbance curves showed LS-LDHs had excellent UV absorptive ability from 200 to 400 nm. Thermogravimetry and differential scanning calorimetry(TG-DSC) indicated LS-LDHs could have a good thermal stability during the processing of bitumen. Compared with the LDHs, the LS-LDHs exhibited better performance in UV aging resistance of bitumen.展开更多
By metalloscopy,scanning electron microscope,X-ray diffraction,electron probe,salt water erosion and hot steam erosion,the microstructures and the aging resistance of zinc alloy ZA-27 with different contents of yttriu...By metalloscopy,scanning electron microscope,X-ray diffraction,electron probe,salt water erosion and hot steam erosion,the microstructures and the aging resistance of zinc alloy ZA-27 with different contents of yttrium were studied. The results show that with optimum addition of yttrium in the alloy ZA-27 the fine YAl_3 phase forms. The fine YAl_3 granules can act as the condensation nuclei of α phase and the number of the α phase′s nuclei increases greatly and the growth of the nuclei comes in for restrict during the crystallization and the alloy′s grains become fine and the segregation reduces. In addition,yttrium also combines with zinc and the fine dispersion Y-Zn phase forms which improves grain boundary conditions and the alloy′s aging resistance. But when the content of yttrium is overmuch some YAl_3 granules grow to be lumpy,so the fine and close texture of the alloy′s boundaries is damaged and the proportion of the interface among the phases increase which brings a decline in the alloy′s resistance to corrosion.展开更多
Regular physical activity(PA)promotes healthy aging,and activities aiming to increase muscular strength(i.e.,resistance exercise(RE))are important PA modalities for achieving health benefits.Previous meta-analyses dem...Regular physical activity(PA)promotes healthy aging,and activities aiming to increase muscular strength(i.e.,resistance exercise(RE))are important PA modalities for achieving health benefits.Previous meta-analyses demonstrated that both RE^(1) and muscular strength^(2) were associated with mortality benefits,even when RE was performed above the PA targets recommended by current guidelines^(1,3).展开更多
The AlMgSi wires with and without Ce were aged at temperatures 18, 30, 40, 50, 70, 100, 120 and 140 degrees C respectively after quenching from solid solution states, and their resistivity was measured in situ during ...The AlMgSi wires with and without Ce were aged at temperatures 18, 30, 40, 50, 70, 100, 120 and 140 degrees C respectively after quenching from solid solution states, and their resistivity was measured in situ during aging. The results showed that the resistance of the samples aged at the temperatures given above except the one at 140 degrees C was increasing with aging time. The rate of increase was large initially and then reduced gradually. The relative resistance increases Delta R/R(0) of the samples with Ce were smaller than that without Ce under similar conditions. The result assumed to be due to reduction of the dispersion of G. P. zone by Ce.展开更多
The light-aging test method commonly used in the automotive industry is utilized to carry out light- aging research on automotive instrument panel (IP) materials and bumper materials. On one hand, the impacts of com...The light-aging test method commonly used in the automotive industry is utilized to carry out light- aging research on automotive instrument panel (IP) materials and bumper materials. On one hand, the impacts of common light-aging test methods on aging degree of automotive component materials are reviewed; on the other hand, the light-aging resistances of different component materials are compared. The results show that, for light-aging behavior of IP materials, the aging degree of the third test method is not severer than that of the second method, but it is severer than that of the first method. The light-aging resistance of IP material A is al- most the same as that of IP material B. With reference to light-aging behavior of bumper materials, the aging de- gree of three common test methods indicates that the aging degree of the sixth test method is not severer than that of the fourth method, but it is severer than that of the fifth method. The light-aging resistance of bumper material D is superior to that of bumper material C.展开更多
The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). Th...The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). The precipitates of the peak aged alloy include both β" and if, but the amount ratio of β" to β" varies with the aging temperature and time increasing. The precipitates during aging at 175 ℃ are dominated by needle-like β" phases (including pre-β" phase), the size of which increases with the time prolonging, but does not increase substantially after further aging. The evolution of electrical conductivity is directly related to such microstructural evolution. However, the hardness of the alloy stays at the peak value for a long term. When the alloy is aged at 195 ℃, the ratio of β" to β' becomes the main factor to influence relative resistivity (Ap) value. The higher the temperature is, the smaller the ratio is, and the faster the Ap value decreases. Moreover, the hardness peak drops with the decrease of the ratio. With the size and distribution parameters measured from TEM images, a semi-quantitative relationship between precipitates and the electrical resistivity was established.展开更多
In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitr...In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitrides during long-term aging, experiments were performed at 700, 800, 850, and 900℃ for different periods (1, 24, 70, and 100 h). The precipitation behavior of carbonitrides in specimens subjected to various aging conditions was explored using carbon replicas and transmission electron microscopy (TEM) observations. The corresponding sizes ofMX carbonitrides were measured. The results demonstrates that MX carbonitrides precipitate in type 347H austenitic steel as Nb(C,N). The coarsening rate constant is time-independent; however, an increase in aging temperature results in an increase in coarsening rate of Nb(C,N). The coarsening process was analyzed according to the calculated diffusion activation energy of Nb(C,N). When the aging temperature was 800-900℃, the mean activation energy was 294 kJ·mol -1, and the coarsening behavior was controlled primarily by the diffusion of Nb atoms.展开更多
The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercr...The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project.展开更多
The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12CrlMoV pearlitic ...The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12CrlMoV pearlitic heat-resistant steel. It is shown that during the high temperature long-term aging, the disordered and jumbled phase-transformed dislocations caused by normalized cooling are recovered and rearranged into cell substructures, and then the dislocation density is reduced gradually. Finally a low density linear dislocation configuration and a stabler dislocation network are formed and ferritic grains grow considerably.展开更多
During the post-antibiotic golden age, it has seen a massive antibiotic/antibacterial production and an increase in irrational use of these few existing drugs in the medical and veterinary practice, food industries, t...During the post-antibiotic golden age, it has seen a massive antibiotic/antibacterial production and an increase in irrational use of these few existing drugs in the medical and veterinary practice, food industries, tissue cultures, agriculture and commercial ethanol production globally. The irrational drug use has been further exacerbated by the increased marketing and promotion of these drugs by the pharmaceutical companies thus increasing their accessibility in the public and hence their improper use. The lack of production and introduction of the newer and effective antibiotic/antibacterial drugs in clinical practice in the post-antibiotic golden age has seen an increase in the emergence of the resistant pathogenic bacterial infections creating a significant problem in the global health of humankind. The massive productions of the antibiotic/antibacterial drugs have contributed to the poor disposal of these drugs and hence many of them are discharged in various water bodies contributing to the environmental antibiotic/antibacterial drug pollution. In the environment, these drugs exert pressure on the environmental bacteria by destroying useful bacteria that are responsible for the recycling of the organic matter and as well as promoting the selection of the resistant pathogenic bacteria that can spread in human and animal population thus causing an increase in the observed bacterial disease burden and hence a significant global public health problem. The resistant bacterial diseases lead to the high cost, increased occurrence of adverse drug reactions, prolonged hospitalization, the exposure to the second- and third-line drugs like in MDR-TB and XDR-TB that leads to toxicity and deaths as well as the increased poor production in agriculture and animal industry and commercial ethanol production.展开更多
The weldability of a low-carbon copper-bearing age hardening steel was evaluated using cracking suscepti- bility calculation, HAZ maximum hardness measurement, and Y-groove cracking evaluation test. The results show t...The weldability of a low-carbon copper-bearing age hardening steel was evaluated using cracking suscepti- bility calculation, HAZ maximum hardness measurement, and Y-groove cracking evaluation test. The results show that the hardenability characteristics and cold cracking susceptibility of the steel are very low. The results also indicate that a crack-free weldment can be obtained during the welding of this type of steel even at an ambient temperature as low as -5 ℃ as well as in an absolute humidity lower than 4 000 Pa without any preheat treatment. A slight preheat treatment can prevent the joint from cracking when welding is carried out at lower ambient temperature or higher absolute humidity.展开更多
To explore rice blast resistance induced by Ag-antibiotic 702, different concentrations of Ag-antibiotic 702 were spayed on susceptible variety Luliangyou 996 at three-leaf and one-heart stage, to screen the optimal c...To explore rice blast resistance induced by Ag-antibiotic 702, different concentrations of Ag-antibiotic 702 were spayed on susceptible variety Luliangyou 996 at three-leaf and one-heart stage, to screen the optimal concentration for inducing rice blast resistance. Ag-antibiotic 702 was sprayed at seven different growth stages of rice, to determine the best growth stage for induced blast resistance and duration of blast resistance. Various treatments were inoculated with spore fluid of Magnaporthe grisea at 4 d post spraying, and disease index and incidence rate as well as induction effect of different treatments were investigated after 7 d. The results showed that six concentrations of Ag-antibiotic 702 could induce rice resistance against blast, and 15 μg/mL led to the highest blast resistance; spraying 15 μg/mL Ag-antibiotic 702 at seven different growth stages could induce rice resistance against blast ; the three-leaf and one-heart stage was the best growth stage for inducing rice blast resistance, and the relative induction effect reached 56.56% ; rice blast resistance was the highest at 48 -96 h post spraying, and duration of induced rice blast resistance exceeded 144 h. The study will provide useful experimental data for further development of Ag-antibiotic 702 and application of pre- vention and control methods against rice blast.展开更多
Commercial ZK60 Mg alloy was processed by multi-pass equal-channel angular pressing(ECAP) and subsequent aging to investigate the effect of grain refinement and second-phase redistribution on its corrosion behavior....Commercial ZK60 Mg alloy was processed by multi-pass equal-channel angular pressing(ECAP) and subsequent aging to investigate the effect of grain refinement and second-phase redistribution on its corrosion behavior. Electrochemical tests show that the fine-grained samples after more ECAP passes have higher corrosion current densities(Jcorr) in the polarization curves, lower charge-transfer resistance(Rt) values in the EIS plots. The severe plastic deformation decreases the alloy corrosion resistance besides the well-known strengthening and toughening. Scanning Kelvin probe(SKP) measurement shows that the anodic and cathode sites are homogeneously distributed on the surface of the fine-grained alloy, which inhibits localized corrosion. The SKP potential, having linear relationship with the corrosion potential(φcorr), decreases with increasing the ECAP pass. Furthermore, the post-ECAP aging can slightly improve the corrosion resistance of the fine-grained ZK60 Mg alloy and enhance the comprehensive performances, due to the stress relief and uniform distribution of second-phase particles.展开更多
[Objective]The aim was to study the effects of sunflower artificial aging on seed vigor and physiological characteristics.[Method] The varieties of seed germination capacity,vigor of germination,germination index,vigo...[Objective]The aim was to study the effects of sunflower artificial aging on seed vigor and physiological characteristics.[Method] The varieties of seed germination capacity,vigor of germination,germination index,vigor index,peroxidase(POD) activity,superoxide dismutase(SOD) activity and malondialdehyde(MDA) content for four sunflower germplasms such as'SunM20','Deep Purple Minle','Da San Kui Hua 4'and'Ji Kui 24'were studied under high temperature and high humidity conditions(100% RH,45 ℃) for different days(0 d,2 d,4 d,6 d,8 d,10 d).[Result]The result showed that the germination capacity,vigor of germination,germination index,vigor index,POD activity,SOD activity declined gradually with the increase of seed aging days,whereas MDA content enhanced by degrees;The diggerences of resistance to artifical aging existed among the four accessions,'SunM20'was the most resistant one,and exhibited the strongest seed vigor,highest activities of two protective enzyme(POD,SOD) and lowest content of MDA at the uniform condition,moreover,the seed vigor and protective enzyme activities of'SunM20'changed slowest among the four materials during the aging process.[Conclusion]The distinct reduction of POD,SOD activities maybe the main reasons for the decrease of sunflower seed vigor at the artificial aging,and the gradual accumulation of a few MDA accelerated seeds aging.展开更多
The paper presented first results elaborated during the European Research Project Re-road which aims at the development of techniques for increasing the recycling rates of reclaimed asphalt. During service life surfac...The paper presented first results elaborated during the European Research Project Re-road which aims at the development of techniques for increasing the recycling rates of reclaimed asphalt. During service life surface asphalt courses are subjected to aging due to oxidation effects which causes the hardening of the binder and thereby a change in the chemical, physical and mechanical properties of the material. Surface courses often contain highly modified binders as well as special additives for improving the performance characteristics. As these layers inhibit the shortest service lives compared to other road construction layers every year high amounts of reclaimed surface asphalt are available for recycling. The question is raised how the reclaimed asphalt consisting of high quality and costly material components can be recycled for optimal added value. To analyze the asphalt mix service life performance and its recyclability during mix design a laboratory method was developed to simulate the real in-situ aging. First the effects of site aging on the binder and asphalt characteristics were presented. Three laboratory aging methods were discussed which aimed the accelerated aging which meets similar property changes as site aging. At last the effects of two different laboratory aging methods on the same SMA mixture were compared.展开更多
The aging precipitation behavior in solution treated Cu-Ni-Si-Cr alloy has been studied in terms of the analyses of the variations in electrical conductivity. On the basis of the linear relationship between the electr...The aging precipitation behavior in solution treated Cu-Ni-Si-Cr alloy has been studied in terms of the analyses of the variations in electrical conductivity. On the basis of the linear relationship between the electrical conductivity and the volume fraction of the precipitates, the phase transformation kinetics equation was deduced from the Avrami empiricai formula. On the basis of this equation, transformation kinetics curves corresponding to 5% and 50% transformation were established.展开更多
This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies obs...This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies observation. Results show that the peak-aging times of Mg-(0.25, 2.5, 5, 8 and 15) Y alloys at 250 ℃ were 4, 6, 10, 12 and 16 h. The aging treatment reduced the corrosion resistance of Mg-Y alloys, and the corrosion resistance of Mg-Y alloys became worse with increasing of the aging time. The change magnitude of the open circuit potentials for Mg-(0.25, 2.5)Y alloys was greater than that of Mg-(5, 8 and 15)-Y alloys. The polarization curves of Mg (0.25, 2.5, 5, 8 and 15) Y alloys had the similar shape after aging treatment, and the slopes of the anodic branch were greater than those of the cathodic branches. After aging treatment, the corrosion modes of Mg-0.25Y and Mg-(2.5, 5, 8 and 15) Y alloys were uniform corrosion and pitting corrosion with small local deep corrosion.展开更多
Cast Mg-6 wt pct Al alloy solution-treated at 683 K for 16 h and aged at 498 K was coated by plasma electrolytic oxidation (PEO) method.The Mg-6 wt pct Al alloy aged for 16 h exhibited the highest microhardness and ...Cast Mg-6 wt pct Al alloy solution-treated at 683 K for 16 h and aged at 498 K was coated by plasma electrolytic oxidation (PEO) method.The Mg-6 wt pct Al alloy aged for 16 h exhibited the highest microhardness and wear resistance.After PEO coating,however,the microhardness and wear resistance of coatings on Mg- 6 wt pct Al alloy showed a tendency to decrease with increasing aging time,which was in aggrement with the change of thickness with aging time.In addition,the coatings on solution-treated Mg-6 wt pct Al alloy had better microhardness and wear resistance than those on aged Mg-6 wt pct Al alloys.Consequently,it can be understood that the aging treatment has a deleterious influence on the mechanical properties of coatings on Mg-6 wt pct Al alloy.展开更多
基金Project(202302AB080024)supported by the Department of Science and Technology of Yunnan Province,China。
文摘The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.
基金supported by the Fundamental Research Funds for the Central Universities of South China University of Technology(SCUT),China(No.2022ZYGXZR106)Science and Technology Plan Special Project of Guangzhou,China(No.GZDD201808).
文摘Paper documents experience severe acidification and embrittlement.Nanocellulose is an excellent reinforcement material for paper documents owing to its compatibility and excellent mechanical strength.However,little research has been conducted on the aging resistance of nanocellulose-reinforced paper.In this study,six types of nanocelluloses were used to reinforce aged paper.The reinforcement and anti-aging performances were evaluated,and the anti-aging mechanism was further clarified.Nanocellulose with a high degree of polymerization can better enhance aged paper,and non-chemical nanocellulose also shows better anti-aging performance,such as nanocellulose prepared by mechanical or biological methods.However,nanocellulose prepared using chemical methods exhibits poor reinforcement and anti-aging performance.This is because it has a small particle size that is not beneficial for physical crosslinking with paper fibers.More importantly,the introduction of acidic or oxidizing groups on nanocellulose accelerates the acid hydrolysis and oxidation rate of paper fibers,especially nanocellulose prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl oxidation,which should not be used to protect paper documents.
基金Funded by the National Basic Research Program of China(973 Program)(2014CB932104)the Fundamental Research Funds for the Central Universities(2017-YB-007)
文摘In order to develop economically anti-ultraviolet(UV) aging additives to bitumen and extend the comprehensive utilization of lignin materials, lignosulfonate(LS) was selected to intercalate into layered double hydroxides(LDHs), then the LS intercalated LDHs(LS-LDHs) were applied to improve UV aging resistance of bitumen. With the characterization of X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, chemical analysis and scanning electron microscopy(SEM), LS was successfully intercalated into the galleries of LDHs. The ultraviolet and visible(UV-vis) absorbance curves showed LS-LDHs had excellent UV absorptive ability from 200 to 400 nm. Thermogravimetry and differential scanning calorimetry(TG-DSC) indicated LS-LDHs could have a good thermal stability during the processing of bitumen. Compared with the LDHs, the LS-LDHs exhibited better performance in UV aging resistance of bitumen.
文摘By metalloscopy,scanning electron microscope,X-ray diffraction,electron probe,salt water erosion and hot steam erosion,the microstructures and the aging resistance of zinc alloy ZA-27 with different contents of yttrium were studied. The results show that with optimum addition of yttrium in the alloy ZA-27 the fine YAl_3 phase forms. The fine YAl_3 granules can act as the condensation nuclei of α phase and the number of the α phase′s nuclei increases greatly and the growth of the nuclei comes in for restrict during the crystallization and the alloy′s grains become fine and the segregation reduces. In addition,yttrium also combines with zinc and the fine dispersion Y-Zn phase forms which improves grain boundary conditions and the alloy′s aging resistance. But when the content of yttrium is overmuch some YAl_3 granules grow to be lumpy,so the fine and close texture of the alloy′s boundaries is damaged and the proportion of the interface among the phases increase which brings a decline in the alloy′s resistance to corrosion.
文摘Regular physical activity(PA)promotes healthy aging,and activities aiming to increase muscular strength(i.e.,resistance exercise(RE))are important PA modalities for achieving health benefits.Previous meta-analyses demonstrated that both RE^(1) and muscular strength^(2) were associated with mortality benefits,even when RE was performed above the PA targets recommended by current guidelines^(1,3).
文摘The AlMgSi wires with and without Ce were aged at temperatures 18, 30, 40, 50, 70, 100, 120 and 140 degrees C respectively after quenching from solid solution states, and their resistivity was measured in situ during aging. The results showed that the resistance of the samples aged at the temperatures given above except the one at 140 degrees C was increasing with aging time. The rate of increase was large initially and then reduced gradually. The relative resistance increases Delta R/R(0) of the samples with Ce were smaller than that without Ce under similar conditions. The result assumed to be due to reduction of the dispersion of G. P. zone by Ce.
文摘The light-aging test method commonly used in the automotive industry is utilized to carry out light- aging research on automotive instrument panel (IP) materials and bumper materials. On one hand, the impacts of common light-aging test methods on aging degree of automotive component materials are reviewed; on the other hand, the light-aging resistances of different component materials are compared. The results show that, for light-aging behavior of IP materials, the aging degree of the third test method is not severer than that of the second method, but it is severer than that of the first method. The light-aging resistance of IP material A is al- most the same as that of IP material B. With reference to light-aging behavior of bumper materials, the aging de- gree of three common test methods indicates that the aging degree of the sixth test method is not severer than that of the fourth method, but it is severer than that of the fifth method. The light-aging resistance of bumper material D is superior to that of bumper material C.
基金Project(51105139)supported by the National Natural Science Foundation of ChinaProject(2010CB731706)supported by the National Basic Research Program of China
文摘The precipitation behavior and its influence on the electrical resistivity of the Al-0.96Mg2Si alloy during aging were investigated with in-situ resistivity measurement and transmission electron microscopy (TEM). The precipitates of the peak aged alloy include both β" and if, but the amount ratio of β" to β" varies with the aging temperature and time increasing. The precipitates during aging at 175 ℃ are dominated by needle-like β" phases (including pre-β" phase), the size of which increases with the time prolonging, but does not increase substantially after further aging. The evolution of electrical conductivity is directly related to such microstructural evolution. However, the hardness of the alloy stays at the peak value for a long term. When the alloy is aged at 195 ℃, the ratio of β" to β' becomes the main factor to influence relative resistivity (Ap) value. The higher the temperature is, the smaller the ratio is, and the faster the Ap value decreases. Moreover, the hardness peak drops with the decrease of the ratio. With the size and distribution parameters measured from TEM images, a semi-quantitative relationship between precipitates and the electrical resistivity was established.
基金the China National Funds for Distinguished Young Scientists (No.51325401)the National High Technology Research and Development Program of China (No.2015AA042504)the National Natural Science Foundation of China (No.51474156) for financial support
文摘In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitrides during long-term aging, experiments were performed at 700, 800, 850, and 900℃ for different periods (1, 24, 70, and 100 h). The precipitation behavior of carbonitrides in specimens subjected to various aging conditions was explored using carbon replicas and transmission electron microscopy (TEM) observations. The corresponding sizes ofMX carbonitrides were measured. The results demonstrates that MX carbonitrides precipitate in type 347H austenitic steel as Nb(C,N). The coarsening rate constant is time-independent; however, an increase in aging temperature results in an increase in coarsening rate of Nb(C,N). The coarsening process was analyzed according to the calculated diffusion activation energy of Nb(C,N). When the aging temperature was 800-900℃, the mean activation energy was 294 kJ·mol -1, and the coarsening behavior was controlled primarily by the diffusion of Nb atoms.
基金supported by the Science and Technology Program of Sichuan Province,China(No.2013GZX0146)
文摘The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project.
基金supported by the Natural Science Foundation of Gansu Province(No.ZS001-A22-046-C).
文摘The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12CrlMoV pearlitic heat-resistant steel. It is shown that during the high temperature long-term aging, the disordered and jumbled phase-transformed dislocations caused by normalized cooling are recovered and rearranged into cell substructures, and then the dislocation density is reduced gradually. Finally a low density linear dislocation configuration and a stabler dislocation network are formed and ferritic grains grow considerably.
文摘During the post-antibiotic golden age, it has seen a massive antibiotic/antibacterial production and an increase in irrational use of these few existing drugs in the medical and veterinary practice, food industries, tissue cultures, agriculture and commercial ethanol production globally. The irrational drug use has been further exacerbated by the increased marketing and promotion of these drugs by the pharmaceutical companies thus increasing their accessibility in the public and hence their improper use. The lack of production and introduction of the newer and effective antibiotic/antibacterial drugs in clinical practice in the post-antibiotic golden age has seen an increase in the emergence of the resistant pathogenic bacterial infections creating a significant problem in the global health of humankind. The massive productions of the antibiotic/antibacterial drugs have contributed to the poor disposal of these drugs and hence many of them are discharged in various water bodies contributing to the environmental antibiotic/antibacterial drug pollution. In the environment, these drugs exert pressure on the environmental bacteria by destroying useful bacteria that are responsible for the recycling of the organic matter and as well as promoting the selection of the resistant pathogenic bacteria that can spread in human and animal population thus causing an increase in the observed bacterial disease burden and hence a significant global public health problem. The resistant bacterial diseases lead to the high cost, increased occurrence of adverse drug reactions, prolonged hospitalization, the exposure to the second- and third-line drugs like in MDR-TB and XDR-TB that leads to toxicity and deaths as well as the increased poor production in agriculture and animal industry and commercial ethanol production.
文摘The weldability of a low-carbon copper-bearing age hardening steel was evaluated using cracking suscepti- bility calculation, HAZ maximum hardness measurement, and Y-groove cracking evaluation test. The results show that the hardenability characteristics and cold cracking susceptibility of the steel are very low. The results also indicate that a crack-free weldment can be obtained during the welding of this type of steel even at an ambient temperature as low as -5 ℃ as well as in an absolute humidity lower than 4 000 Pa without any preheat treatment. A slight preheat treatment can prevent the joint from cracking when welding is carried out at lower ambient temperature or higher absolute humidity.
基金Supported by National Natural Science Foundation of China(31360450)
文摘To explore rice blast resistance induced by Ag-antibiotic 702, different concentrations of Ag-antibiotic 702 were spayed on susceptible variety Luliangyou 996 at three-leaf and one-heart stage, to screen the optimal concentration for inducing rice blast resistance. Ag-antibiotic 702 was sprayed at seven different growth stages of rice, to determine the best growth stage for induced blast resistance and duration of blast resistance. Various treatments were inoculated with spore fluid of Magnaporthe grisea at 4 d post spraying, and disease index and incidence rate as well as induction effect of different treatments were investigated after 7 d. The results showed that six concentrations of Ag-antibiotic 702 could induce rice resistance against blast, and 15 μg/mL led to the highest blast resistance; spraying 15 μg/mL Ag-antibiotic 702 at seven different growth stages could induce rice resistance against blast ; the three-leaf and one-heart stage was the best growth stage for inducing rice blast resistance, and the relative induction effect reached 56.56% ; rice blast resistance was the highest at 48 -96 h post spraying, and duration of induced rice blast resistance exceeded 144 h. The study will provide useful experimental data for further development of Ag-antibiotic 702 and application of pre- vention and control methods against rice blast.
基金Project(BK20131373)supported by the Natural Science Foundation of Jiangsu ProvinceChina
文摘Commercial ZK60 Mg alloy was processed by multi-pass equal-channel angular pressing(ECAP) and subsequent aging to investigate the effect of grain refinement and second-phase redistribution on its corrosion behavior. Electrochemical tests show that the fine-grained samples after more ECAP passes have higher corrosion current densities(Jcorr) in the polarization curves, lower charge-transfer resistance(Rt) values in the EIS plots. The severe plastic deformation decreases the alloy corrosion resistance besides the well-known strengthening and toughening. Scanning Kelvin probe(SKP) measurement shows that the anodic and cathode sites are homogeneously distributed on the surface of the fine-grained alloy, which inhibits localized corrosion. The SKP potential, having linear relationship with the corrosion potential(φcorr), decreases with increasing the ECAP pass. Furthermore, the post-ECAP aging can slightly improve the corrosion resistance of the fine-grained ZK60 Mg alloy and enhance the comprehensive performances, due to the stress relief and uniform distribution of second-phase particles.
文摘[Objective]The aim was to study the effects of sunflower artificial aging on seed vigor and physiological characteristics.[Method] The varieties of seed germination capacity,vigor of germination,germination index,vigor index,peroxidase(POD) activity,superoxide dismutase(SOD) activity and malondialdehyde(MDA) content for four sunflower germplasms such as'SunM20','Deep Purple Minle','Da San Kui Hua 4'and'Ji Kui 24'were studied under high temperature and high humidity conditions(100% RH,45 ℃) for different days(0 d,2 d,4 d,6 d,8 d,10 d).[Result]The result showed that the germination capacity,vigor of germination,germination index,vigor index,POD activity,SOD activity declined gradually with the increase of seed aging days,whereas MDA content enhanced by degrees;The diggerences of resistance to artifical aging existed among the four accessions,'SunM20'was the most resistant one,and exhibited the strongest seed vigor,highest activities of two protective enzyme(POD,SOD) and lowest content of MDA at the uniform condition,moreover,the seed vigor and protective enzyme activities of'SunM20'changed slowest among the four materials during the aging process.[Conclusion]The distinct reduction of POD,SOD activities maybe the main reasons for the decrease of sunflower seed vigor at the artificial aging,and the gradual accumulation of a few MDA accelerated seeds aging.
基金Funed by the Europeans Community’s Seventh Framework Program(FP7/2007-2013) (No. SCP-GA-2008-218747)
文摘The paper presented first results elaborated during the European Research Project Re-road which aims at the development of techniques for increasing the recycling rates of reclaimed asphalt. During service life surface asphalt courses are subjected to aging due to oxidation effects which causes the hardening of the binder and thereby a change in the chemical, physical and mechanical properties of the material. Surface courses often contain highly modified binders as well as special additives for improving the performance characteristics. As these layers inhibit the shortest service lives compared to other road construction layers every year high amounts of reclaimed surface asphalt are available for recycling. The question is raised how the reclaimed asphalt consisting of high quality and costly material components can be recycled for optimal added value. To analyze the asphalt mix service life performance and its recyclability during mix design a laboratory method was developed to simulate the real in-situ aging. First the effects of site aging on the binder and asphalt characteristics were presented. Three laboratory aging methods were discussed which aimed the accelerated aging which meets similar property changes as site aging. At last the effects of two different laboratory aging methods on the same SMA mixture were compared.
基金This work was supported by the National High Technology Research Project“863"under Grant No.2002AA331112by the Major Science&Technology Project of Henan Province,China,under Grant No.0122021300.
文摘The aging precipitation behavior in solution treated Cu-Ni-Si-Cr alloy has been studied in terms of the analyses of the variations in electrical conductivity. On the basis of the linear relationship between the electrical conductivity and the volume fraction of the precipitates, the phase transformation kinetics equation was deduced from the Avrami empiricai formula. On the basis of this equation, transformation kinetics curves corresponding to 5% and 50% transformation were established.
基金Projects(2011BAE22B01,2011BAE22B06)supported by the National Key Technology R&D Program,China
文摘This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies observation. Results show that the peak-aging times of Mg-(0.25, 2.5, 5, 8 and 15) Y alloys at 250 ℃ were 4, 6, 10, 12 and 16 h. The aging treatment reduced the corrosion resistance of Mg-Y alloys, and the corrosion resistance of Mg-Y alloys became worse with increasing of the aging time. The change magnitude of the open circuit potentials for Mg-(0.25, 2.5)Y alloys was greater than that of Mg-(5, 8 and 15)-Y alloys. The polarization curves of Mg (0.25, 2.5, 5, 8 and 15) Y alloys had the similar shape after aging treatment, and the slopes of the anodic branch were greater than those of the cathodic branches. After aging treatment, the corrosion modes of Mg-0.25Y and Mg-(2.5, 5, 8 and 15) Y alloys were uniform corrosion and pitting corrosion with small local deep corrosion.
文摘Cast Mg-6 wt pct Al alloy solution-treated at 683 K for 16 h and aged at 498 K was coated by plasma electrolytic oxidation (PEO) method.The Mg-6 wt pct Al alloy aged for 16 h exhibited the highest microhardness and wear resistance.After PEO coating,however,the microhardness and wear resistance of coatings on Mg- 6 wt pct Al alloy showed a tendency to decrease with increasing aging time,which was in aggrement with the change of thickness with aging time.In addition,the coatings on solution-treated Mg-6 wt pct Al alloy had better microhardness and wear resistance than those on aged Mg-6 wt pct Al alloys.Consequently,it can be understood that the aging treatment has a deleterious influence on the mechanical properties of coatings on Mg-6 wt pct Al alloy.