Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed tha...Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials.展开更多
The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-q...The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels.展开更多
Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,ne...Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,net-shaped Mg5RE and Zr-rich phases.According to aging hardening curves and tensile properties variation,the optimized condition of solution treatment at 520℃for 8 h and subsequent aging at 204℃for 12 h was selected.The continuous secondary Mg5RE phase predominantly formed at grain boundaries during solidification transforms to residual discontinuousβ-Mg5RE phase and fine cuboid REH2particles after heat treatment.The annealed alloy exhibits good comprehensive tensile property at 350℃,with ultimate tensile strength of 153 MPa and elongation to fracture of 6.9%.Segregation of RE elements and eventually RE-rich precipitation at grain boundaries are responsible for the high strength at elevated temperature.展开更多
In light of the low yields and complex reaction routes of some well-known 5,5-fused and 5,6-fused bicyclic compounds,a series of 5,7-fused bicyclic imidazole-diazepine compounds were developed with high yields by only...In light of the low yields and complex reaction routes of some well-known 5,5-fused and 5,6-fused bicyclic compounds,a series of 5,7-fused bicyclic imidazole-diazepine compounds were developed with high yields by only two efficient steps.Significantly,the seven-membered heterocyclic ring has a stable energetic skeleton with multiple modifiable sites.However,the 5,7-fused bicyclic energetic compounds were rarely reported in the area of energetic materials.Three neutral compounds 1,2 and 4 were synthesized in this work.To improve the detonation performances of the 5,7-fused neutral compounds,corresponding perchlorate 1a and 2a were further developed.The physicochemical and energetic performances of all newly developed compounds were experimentally determined.All newly prepared energetic compounds exhibit high decomposition temperatures(Td:243.8-336℃)and low mechanical sensitivities(IS:>15 J,FS:>280 N).Among them,the velocities performances of 1a(Dv=7651 m/s)and 4(Dv=7600 m/s)are comparable to that of typical heat-resistant energetic material HNS(Dv=7612 m/s).Meanwhile,the high decomposition temperature and low mechanical sensitivities(Td=336℃;IS=32 J;FS>353 N)of 4 are superior to that of HNS(Td=318℃;IS=5 J;FS=250 N).Hence,the 5,7-fused bicyclic compounds with high thermostability,low sensitivities and adjustable detonation performance have a clear tendency to open up a new space for the development of heat-resistant energetic materials.展开更多
Turbulence is expected to play a relevant role in the so-called conductor gallop phenomena,namely,the high-amplitude,low-frequency oscillation of overhead power lines due to the formation of ice structures and the ens...Turbulence is expected to play a relevant role in the so-called conductor gallop phenomena,namely,the high-amplitude,low-frequency oscillation of overhead power lines due to the formation of ice structures and the ensu-ing effect that wind can have on these.In this work,the galloping time history of a wire with distorted(fixed in time)shape due to the formation of ice is analyzed numerically in the frame of afluid-solid coupling method for different wind speeds and levels of turbulence.The results show that the turbulence intensity has a moderate effect on the increase of the conductor’s aerodynamic lift and drag coefficients due to ice accretion;nevertheless,the corresponding changes in the torsion coefficient are very significant and complicated.A high turbulence intensity can affect the torsion coefficient in a certain range of attack angles and increase the torsion angle of the conductor.Through comparison of the galloping phenomena for different wind velocities,it is found that the related amplitude grows significantly with an increase of the wind speed.For a relatively large wind speed,the galloping amplitude is more sensitive to the turbulence intensity.Moreover,the larger the turbulence intensity,the larger the conductor’s vertical and horizontal galloping amplitudes after icing.The torsion angle also increases with an increase in the wind speed and turbulence intensity.展开更多
Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical vers...Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.展开更多
High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of th...High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.展开更多
The microstructures and phase compositions of the as-cast and die-cast Mg-6.02Al-1.03 Sm, Mg-6.05Al-0.98Sm-0.56 Bi and Mg-5.95Al-1.01Sm-0.57 Zn alloys were investigated. Meanwhile, the tensile mechanical and flow prop...The microstructures and phase compositions of the as-cast and die-cast Mg-6.02Al-1.03 Sm, Mg-6.05Al-0.98Sm-0.56 Bi and Mg-5.95Al-1.01Sm-0.57 Zn alloys were investigated. Meanwhile, the tensile mechanical and flow properties were tested. The results show that the as-cast microstructure of Mg-6.02Al-1.03 Sm alloy is composed of δ-Mg matrix, discontinuous δ-Mg17Al12 phase and small block Al2 Sm phase with high thermal stability. Rod Mg3Bi2 phase precipitates when Bi is added, while the added metal Zn dissolves into δ-Mg matrix and δ-Mg17Al12 phase. The as-cast alloys exhibit the excellent tensile mechanical property. The tensile strength(δb) and elongation(δ) can reach 205-235 MPa and 8.5%-16.0% at ambient temperature, respectively. Meanwhile, they can also exceed 160 MPa and 14.0% at 423 K, respectively. The die-cast microstructures are refined obviously, and meanwhile the broken second phases distribute dispersedly. The die-cast alloys exhibit better tensile mechanical properties with the values of δb and δ of 240-285 MPa and 8.5%-16.5% at ambient temperature, respectively, and excellent flow property with the flow length of 1870-2420 mm. The die-cast tensile fractures at ambient temperature exhibit a typical character of ductile fracture.展开更多
In this paper the heat withstanding mechanism of heat-resisting aluminum alloy conductor is discussed, the types and performance of the conductor and its application on transmission lines are analyzed and introduced, ...In this paper the heat withstanding mechanism of heat-resisting aluminum alloy conductor is discussed, the types and performance of the conductor and its application on transmission lines are analyzed and introduced, and suggestions on accelerating exploitation and application of the conductor are put forward.展开更多
This paper introduces the key laboratory on bundle conductors for high voltage overhead lines built byElectric Power Construction Research Institute under the State Power Corporation of China. It consists of 4 sub-lab...This paper introduces the key laboratory on bundle conductors for high voltage overhead lines built byElectric Power Construction Research Institute under the State Power Corporation of China. It consists of 4 sub-laboratories, namely the Aeolian Vibration Lab, Spacer Vibration Lab, Conductor Fatigue Lab and Conductor CreepageLab. The paper introduces also laboratory’s facilities, functions and some experimental results.[展开更多
Boosting the utilization efficiency of sulfur electrodes and suppressing the“shuttle effect”of intermediate polysulfides remain the critical challenge for high-performance lithium-sulfur batteries(LSBs).However,most...Boosting the utilization efficiency of sulfur electrodes and suppressing the“shuttle effect”of intermediate polysulfides remain the critical challenge for high-performance lithium-sulfur batteries(LSBs).However,most of reported sulfur electrodes are not competent to realize the fast conversion of polysulfides into insoluble lithium sulfides when applied with high sulfur loading,as well as to mitigate the more serious shuttle effect of polysulfides,especially when worked at an elevated temperature.Herein,we reported a unique structural engineering strategy of crafting a unique hierarchical multifunctional electrode architecture constructed by rooting MOF-derived CoS2/carbon nanoleaf arrays(CoS2-CNA)into a nitrogen-rich 3D conductive scaffold(CTNF@CoS2-CNA)for LSBs.An accelerated electrocatalytic effect and improved polysulfide redox kinetics arising from CoS2-CNA were investigated.Besides,the strong capillarity effect and chemisorption of CTNF@CoS2-CNA to polysulfides enable high loading and efficient utilization of sulfur,thus leading to high-performance LIBs performed not only at room temperature but also up to an elevated temperature(55°C).Even with the ultrahigh sulfur loading of 7.19 mg cm?2,the CTNF@CoS2-CNA/S cathode still exhibits high rate capacity at 55°C.展开更多
The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of ...The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of fine needle-like RE-rich phases are observed in the alloys with RE addition. Solutionizing treatment does not change their morphologies and sizes, indicating that they have good thermal stability. The addition of RE totally alters the solidification process of eutectic CruAl2 phase, from network-like phase in the form of segregation at the final eutectic grain boundaries to discretely blocky phase growing on the hair-filamentous RE-rich needles. In the alloys with Ce addition, blocky CuAl2, particulate Al15Mn3Si2 and needle-like RE-rich needle phases grow together, but they did not occur in the alloy with only La addition. The addition of RE does not considerably improve the strength of the alloy at high temperatures. The formation of RE-rich phases also does not significantly alter the originating and propagating of micro-cracks in the alloy during tensile test.展开更多
The central solenoid(CS)is one of the key components of the International Thermonuclear Experimental Reactor(ITER)tokamak and which is often considered as the heart of this fusion reactor.This solenoid will be bui...The central solenoid(CS)is one of the key components of the International Thermonuclear Experimental Reactor(ITER)tokamak and which is often considered as the heart of this fusion reactor.This solenoid will be built by using Nb3Sn cablein-conduit conductors(CICC),capable of generating a 13 T magnetic field.In order to assess the performance of the Nb3Sn CICC in nearly the ITER condition,many short samples have been evaluated at the SULTAN test facility(the background magnetic field is of 10.85 T with the uniform length of 400 mm at 1%homogeneity)in Centre de Recherches en Physique des Plasma(CRPP).It is found that the samples with pseudo-long twist pitch(including baseline specimens)show a significant degradation in the current-sharing temperature(Tcs),while the qualification tests of all short twist pitch(STP)samples,which show no degradation versus electromagnetic cycling,even exhibits an increase of Tcs.This behavior was perfectly reproduced in the coil experiments at the central solenoid model coil(CSMC)facility last year.In this paper,the complex structure of the Nb3Sn CICC would be simplified into a wire rope consisting of six petals and a cooling spiral.An analytical formula for the Tcs behavior as a function of the axial strain of the cable is presented.Based on this,the effects of twist pitch,axial and transverse stiffness,thermal mismatch,cycling number,magnetic distribution,etc.,on the axial strain are discussed systematically.The calculated Tcs behavior with cycle number show consistency with the previous experimental results qualitatively and quantitatively.Lastly,we focus on the relationship between Tcs and axial strain of the cable,and we conclude that the Tcs behavior caused by electromagnetic cycles is determined by the cable axial strain.Once the cable is in a compression situation,this compression strain and its accumulation would lead to the Tcs degradation.The experimental observation of the Tcs enhancement in the CS STP samples should be considered as a contribution of the shorter length of the high field zone in SULTAN and CSMC devices,as well as the tight cable structure.展开更多
BaZr1-xScxO3-0.5x (x=0.07,0.10,0.13,0.16) powders were prepared by solid-state reaction method,and ZnO was used as sintering aid.Samples with different amount of ZnO additive were sintered at 1450·C for 6 h in ai...BaZr1-xScxO3-0.5x (x=0.07,0.10,0.13,0.16) powders were prepared by solid-state reaction method,and ZnO was used as sintering aid.Samples with different amount of ZnO additive were sintered at 1450·C for 6 h in air.Single cubic perovskite phase proton conductors were obtained.Conductivity was measured by electrochemical workstation.It was shown that Sc doping could increase conductivity through enhancing the carrier concentration in the material,but excessive Sc content might decrease the carrier concentration because of its charge compensation.ZnO had an influence on carrier concentration and mobility and affected the electrical conductivity.2 mol% ZnO and 13 mol% ScO1.5 doped sample showed the highest DC conductivity of 3.6×10-3 S·cm-1 tested at 800·C in wet hydrogen atmosphere.展开更多
A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based o...A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based on the linearized governing differential equationsof the conductors, the mass matrix and stiffness matrix of the element in consideration of theconstrained relations imposed on the conductors by spacers are derived. The dynamic characteristicsof the galloping control devices can be directly added to the element. The modes for an actual powerline structure are computed by using the element formula and FEM procedures, where seven cases ofdifferent galloping control device allocations are considered. Compared with the measured data, themethod is shown to be reliable and effective. Analysis and discussions of the computational resultsare given. Some hints that are helpful to further investigation of galloping are also obtained .展开更多
The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(...The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.展开更多
In research of YBCO coated conductors, the development of a oxide template for epitaxial growth of YBCO is very important. Matsumoto et al have demonstrated the potential of the surface oxidation epitaxial (SOE) route...In research of YBCO coated conductors, the development of a oxide template for epitaxial growth of YBCO is very important. Matsumoto et al have demonstrated the potential of the surface oxidation epitaxial (SOE) route for formation a cube textured NiO layer on nickel tapes. The epitaxial NiO functions as a buffer layer of chemical reaction between YBCO and nickel, and as a template for the epitaxial growth of YBCO. However, the surface quality of NiO is difficult to control and defects such as crack, spall and deep grooves exist in SOE NiO layer. A new approach combining sputtering and SOE method to obtain crack-free and cube textured NiO layer were reported. Ni tapes prepared by the combination of rolling and recrystallization were used for this work. A coating of Ni was first deposited on the tapes via magnetron sputtering. Then on the coating tapes, continuous and textured NiO layer were achieved by SOE technology.展开更多
The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental resul...The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental results show that the chemical compositions of delta ferrites negligibly change with dissolution time.The decrease of dissolution rate of delta ferrites with dissolution time should be attributed to the change of shape and distribution of delta ferrites.The shape of delta ferrites tends to transfer from polygon to sphere with dissolution time,causing the decrease of specific surface area of delta ferrites.The distribution position of delta ferrites tends to transfer from boundaries of austenite grains to interior of austenite grains with dissolution time,decreasing the diffusion coefficient of alloy atoms.Both them decrease the dissolution rate of delta ferrites.展开更多
A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin i...A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin ionic conductor films are obtained from the three-dimensional(3D) equations by power series expansions in the film thickness coordinate, retaining the lower-order equations. The thin-film equations for ionic conductors are combined with similar equations for one thin dielectric film to derive the 2D equations of thin sandwich films composed of a dielectric layer and two ionic conductor layers. A sandwich film in the literature, as an ionic cable, is analyzed as an example of the equations obtained in this paper. The numerical results show the effect of diffusion in addition to the conduction treated in the literature. The obtained theoretical model including both conduction and diffusion phenomena can be used to investigate the performance of ionic-conductor devices with any frequency.展开更多
To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature o...To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature oxidation behavior of 9Cr‒5Si and 9Cr‒5Si‒3Al ferritic heat-resistant steels at 900 and 1000℃.The characteristics of the oxide layer were analyzed by X-ray diffraction,scanning electron microscopy,and energy dispersive spectroscopy.The results show that the oxidation kinetics curves of the two tested steels follow the parabolic law,with the parabolic rate constant kp of 9Cr‒5Si‒3Al steel being much lower than that of 9Cr‒5Si steel at both 900 and 1000℃.The oxide film on the surface of the 9Cr‒5Si alloy exhibits Cr2MnO4 and Cr2O3 phases in the outer layer after oxidation at 900 and 1000℃.However,at oxidation temperatures of 900 and 1000℃,the oxide film of the 9Cr‒5Si‒3Al alloy consists only of Al2O3 and its oxide layer is thinner than that of the 9Cr‒5Si alloy.These results indicate that the addition of Al to the 9Cr‒5Si steel can improve its high-temperature oxidation resistance,which can be attributed to the formation of a continuous and compact Al2O3 film on the surface of the steel.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.21975127,22105102,and 22135003)Young Elite Scientist Sponsorship Program by CAST(Grant No.YESS20210074)the Fundamental Research Funds for the Central Universities(Grant No.30921011204)。
文摘Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials.
基金financially supported by the National Natural Science Foundation of China (Nos. 52171057, 52034005, 51901225, and 12027813)the Liaoning Province Excellent Youth Foundation, China (No. 2021-YQ-01)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. Y2021061)
文摘The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels.
基金support of the National Natural Science Foundation of China(Grant number 52071088)。
文摘Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,net-shaped Mg5RE and Zr-rich phases.According to aging hardening curves and tensile properties variation,the optimized condition of solution treatment at 520℃for 8 h and subsequent aging at 204℃for 12 h was selected.The continuous secondary Mg5RE phase predominantly formed at grain boundaries during solidification transforms to residual discontinuousβ-Mg5RE phase and fine cuboid REH2particles after heat treatment.The annealed alloy exhibits good comprehensive tensile property at 350℃,with ultimate tensile strength of 153 MPa and elongation to fracture of 6.9%.Segregation of RE elements and eventually RE-rich precipitation at grain boundaries are responsible for the high strength at elevated temperature.
基金support from the National Natural Science Foundation of China(Grant No.22075143,21875110)the Science Challenge Project(Grant No.TZ2018004)the Qing Lan Project for the grant。
文摘In light of the low yields and complex reaction routes of some well-known 5,5-fused and 5,6-fused bicyclic compounds,a series of 5,7-fused bicyclic imidazole-diazepine compounds were developed with high yields by only two efficient steps.Significantly,the seven-membered heterocyclic ring has a stable energetic skeleton with multiple modifiable sites.However,the 5,7-fused bicyclic energetic compounds were rarely reported in the area of energetic materials.Three neutral compounds 1,2 and 4 were synthesized in this work.To improve the detonation performances of the 5,7-fused neutral compounds,corresponding perchlorate 1a and 2a were further developed.The physicochemical and energetic performances of all newly developed compounds were experimentally determined.All newly prepared energetic compounds exhibit high decomposition temperatures(Td:243.8-336℃)and low mechanical sensitivities(IS:>15 J,FS:>280 N).Among them,the velocities performances of 1a(Dv=7651 m/s)and 4(Dv=7600 m/s)are comparable to that of typical heat-resistant energetic material HNS(Dv=7612 m/s).Meanwhile,the high decomposition temperature and low mechanical sensitivities(Td=336℃;IS=32 J;FS>353 N)of 4 are superior to that of HNS(Td=318℃;IS=5 J;FS=250 N).Hence,the 5,7-fused bicyclic compounds with high thermostability,low sensitivities and adjustable detonation performance have a clear tendency to open up a new space for the development of heat-resistant energetic materials.
基金This work was supported in part by the National Natural Science Foundation of China[Grant No.51867013].
文摘Turbulence is expected to play a relevant role in the so-called conductor gallop phenomena,namely,the high-amplitude,low-frequency oscillation of overhead power lines due to the formation of ice structures and the ensu-ing effect that wind can have on these.In this work,the galloping time history of a wire with distorted(fixed in time)shape due to the formation of ice is analyzed numerically in the frame of afluid-solid coupling method for different wind speeds and levels of turbulence.The results show that the turbulence intensity has a moderate effect on the increase of the conductor’s aerodynamic lift and drag coefficients due to ice accretion;nevertheless,the corresponding changes in the torsion coefficient are very significant and complicated.A high turbulence intensity can affect the torsion coefficient in a certain range of attack angles and increase the torsion angle of the conductor.Through comparison of the galloping phenomena for different wind velocities,it is found that the related amplitude grows significantly with an increase of the wind speed.For a relatively large wind speed,the galloping amplitude is more sensitive to the turbulence intensity.Moreover,the larger the turbulence intensity,the larger the conductor’s vertical and horizontal galloping amplitudes after icing.The torsion angle also increases with an increase in the wind speed and turbulence intensity.
基金supported by the Basic Science Research Program (No.RS-2024-00344021) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planningthe financial support from the National Natural Science Foundation of China (52103277)+2 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (23HASTIT015)Natural Science Foundation of Henan Province (242300421073)supported by the Technology Innovation Program (20010960) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea)
文摘Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.
基金Project supported by the National Natural Science Foundation of China(Nos.12302278,U2241267,12172155,and 11932008)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-48)the Natural Science Foundation of Gansu Province of China(No.24JRRA473)。
文摘High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.
基金Project(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2011A080403008)supported by the Major Science and Technology Project of Guangdong Province,China
文摘The microstructures and phase compositions of the as-cast and die-cast Mg-6.02Al-1.03 Sm, Mg-6.05Al-0.98Sm-0.56 Bi and Mg-5.95Al-1.01Sm-0.57 Zn alloys were investigated. Meanwhile, the tensile mechanical and flow properties were tested. The results show that the as-cast microstructure of Mg-6.02Al-1.03 Sm alloy is composed of δ-Mg matrix, discontinuous δ-Mg17Al12 phase and small block Al2 Sm phase with high thermal stability. Rod Mg3Bi2 phase precipitates when Bi is added, while the added metal Zn dissolves into δ-Mg matrix and δ-Mg17Al12 phase. The as-cast alloys exhibit the excellent tensile mechanical property. The tensile strength(δb) and elongation(δ) can reach 205-235 MPa and 8.5%-16.0% at ambient temperature, respectively. Meanwhile, they can also exceed 160 MPa and 14.0% at 423 K, respectively. The die-cast microstructures are refined obviously, and meanwhile the broken second phases distribute dispersedly. The die-cast alloys exhibit better tensile mechanical properties with the values of δb and δ of 240-285 MPa and 8.5%-16.5% at ambient temperature, respectively, and excellent flow property with the flow length of 1870-2420 mm. The die-cast tensile fractures at ambient temperature exhibit a typical character of ductile fracture.
文摘In this paper the heat withstanding mechanism of heat-resisting aluminum alloy conductor is discussed, the types and performance of the conductor and its application on transmission lines are analyzed and introduced, and suggestions on accelerating exploitation and application of the conductor are put forward.
文摘This paper introduces the key laboratory on bundle conductors for high voltage overhead lines built byElectric Power Construction Research Institute under the State Power Corporation of China. It consists of 4 sub-laboratories, namely the Aeolian Vibration Lab, Spacer Vibration Lab, Conductor Fatigue Lab and Conductor CreepageLab. The paper introduces also laboratory’s facilities, functions and some experimental results.[
基金financial support from the National Key Research and Development Program of China(2018YFB0104201).
文摘Boosting the utilization efficiency of sulfur electrodes and suppressing the“shuttle effect”of intermediate polysulfides remain the critical challenge for high-performance lithium-sulfur batteries(LSBs).However,most of reported sulfur electrodes are not competent to realize the fast conversion of polysulfides into insoluble lithium sulfides when applied with high sulfur loading,as well as to mitigate the more serious shuttle effect of polysulfides,especially when worked at an elevated temperature.Herein,we reported a unique structural engineering strategy of crafting a unique hierarchical multifunctional electrode architecture constructed by rooting MOF-derived CoS2/carbon nanoleaf arrays(CoS2-CNA)into a nitrogen-rich 3D conductive scaffold(CTNF@CoS2-CNA)for LSBs.An accelerated electrocatalytic effect and improved polysulfide redox kinetics arising from CoS2-CNA were investigated.Besides,the strong capillarity effect and chemisorption of CTNF@CoS2-CNA to polysulfides enable high loading and efficient utilization of sulfur,thus leading to high-performance LIBs performed not only at room temperature but also up to an elevated temperature(55°C).Even with the ultrahigh sulfur loading of 7.19 mg cm?2,the CTNF@CoS2-CNA/S cathode still exhibits high rate capacity at 55°C.
基金Project(BM2007204)supported by the Jiangsu Key Laboratory of Advanced Metallic Materials,ChinaProject(2242016K40011)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effect of RE addition on solidification process and high-temperature strength of Al-12%Si-4%Cu-1.6%Mn(in wt.%)heat-resistant alloy was investigated by microstructure observation and tensile test.A great number of fine needle-like RE-rich phases are observed in the alloys with RE addition. Solutionizing treatment does not change their morphologies and sizes, indicating that they have good thermal stability. The addition of RE totally alters the solidification process of eutectic CruAl2 phase, from network-like phase in the form of segregation at the final eutectic grain boundaries to discretely blocky phase growing on the hair-filamentous RE-rich needles. In the alloys with Ce addition, blocky CuAl2, particulate Al15Mn3Si2 and needle-like RE-rich needle phases grow together, but they did not occur in the alloy with only La addition. The addition of RE does not considerably improve the strength of the alloy at high temperatures. The formation of RE-rich phases also does not significantly alter the originating and propagating of micro-cracks in the alloy during tensile test.
基金supported by the National Natural Science Foundation of China(Grant 11622217)the National Key Project of Scientific Instrument and Equipment Development(Grant 11327802)supported by the Fundamental Research Funds for the Central Universities(Grants lzujbky-2017-ot18,lzujbky-2017-k18)
文摘The central solenoid(CS)is one of the key components of the International Thermonuclear Experimental Reactor(ITER)tokamak and which is often considered as the heart of this fusion reactor.This solenoid will be built by using Nb3Sn cablein-conduit conductors(CICC),capable of generating a 13 T magnetic field.In order to assess the performance of the Nb3Sn CICC in nearly the ITER condition,many short samples have been evaluated at the SULTAN test facility(the background magnetic field is of 10.85 T with the uniform length of 400 mm at 1%homogeneity)in Centre de Recherches en Physique des Plasma(CRPP).It is found that the samples with pseudo-long twist pitch(including baseline specimens)show a significant degradation in the current-sharing temperature(Tcs),while the qualification tests of all short twist pitch(STP)samples,which show no degradation versus electromagnetic cycling,even exhibits an increase of Tcs.This behavior was perfectly reproduced in the coil experiments at the central solenoid model coil(CSMC)facility last year.In this paper,the complex structure of the Nb3Sn CICC would be simplified into a wire rope consisting of six petals and a cooling spiral.An analytical formula for the Tcs behavior as a function of the axial strain of the cable is presented.Based on this,the effects of twist pitch,axial and transverse stiffness,thermal mismatch,cycling number,magnetic distribution,etc.,on the axial strain are discussed systematically.The calculated Tcs behavior with cycle number show consistency with the previous experimental results qualitatively and quantitatively.Lastly,we focus on the relationship between Tcs and axial strain of the cable,and we conclude that the Tcs behavior caused by electromagnetic cycles is determined by the cable axial strain.Once the cable is in a compression situation,this compression strain and its accumulation would lead to the Tcs degradation.The experimental observation of the Tcs enhancement in the CS STP samples should be considered as a contribution of the shorter length of the high field zone in SULTAN and CSMC devices,as well as the tight cable structure.
基金financially supported by the National Natural Science Foundation of China (No.50872090)Guizhou Province-University Scientific and Technological Cooperation Program (No.[2011]7002)
文摘BaZr1-xScxO3-0.5x (x=0.07,0.10,0.13,0.16) powders were prepared by solid-state reaction method,and ZnO was used as sintering aid.Samples with different amount of ZnO additive were sintered at 1450·C for 6 h in air.Single cubic perovskite phase proton conductors were obtained.Conductivity was measured by electrochemical workstation.It was shown that Sc doping could increase conductivity through enhancing the carrier concentration in the material,but excessive Sc content might decrease the carrier concentration because of its charge compensation.ZnO had an influence on carrier concentration and mobility and affected the electrical conductivity.2 mol% ZnO and 13 mol% ScO1.5 doped sample showed the highest DC conductivity of 3.6×10-3 S·cm-1 tested at 800·C in wet hydrogen atmosphere.
文摘A new type of element which is suitable for solving the modes of thegalloping long multi-span bundle conductor structures is presented. The element is composed of allsub-conductor segments between two spacers. Based on the linearized governing differential equationsof the conductors, the mass matrix and stiffness matrix of the element in consideration of theconstrained relations imposed on the conductors by spacers are derived. The dynamic characteristicsof the galloping control devices can be directly added to the element. The modes for an actual powerline structure are computed by using the element formula and FEM procedures, where seven cases ofdifferent galloping control device allocations are considered. Compared with the measured data, themethod is shown to be reliable and effective. Analysis and discussions of the computational resultsare given. Some hints that are helpful to further investigation of galloping are also obtained .
基金Funded by State Key Lab of Advanced Welding and Joint,Harbin Institute of Technology(No.09014)the Natural Science Foundation of Hubei Province in China(No.2007ABA040)
文摘The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.
文摘In research of YBCO coated conductors, the development of a oxide template for epitaxial growth of YBCO is very important. Matsumoto et al have demonstrated the potential of the surface oxidation epitaxial (SOE) route for formation a cube textured NiO layer on nickel tapes. The epitaxial NiO functions as a buffer layer of chemical reaction between YBCO and nickel, and as a template for the epitaxial growth of YBCO. However, the surface quality of NiO is difficult to control and defects such as crack, spall and deep grooves exist in SOE NiO layer. A new approach combining sputtering and SOE method to obtain crack-free and cube textured NiO layer were reported. Ni tapes prepared by the combination of rolling and recrystallization were used for this work. A coating of Ni was first deposited on the tapes via magnetron sputtering. Then on the coating tapes, continuous and textured NiO layer were achieved by SOE technology.
基金Funded by the National Natural Science Foundation of China(No.51701100)the China Postdoctoral Science Foundation(No.2020T130552)the Science and Technology Support Plan for Youth Innovation of Colleges in Shandong Province。
文摘The dissolution behavior of delta ferrites in martensitic heat-resistant steel was studied.And the reason why the dissolution rate of delta ferrites decreased with dissolution time was discussed.The experimental results show that the chemical compositions of delta ferrites negligibly change with dissolution time.The decrease of dissolution rate of delta ferrites with dissolution time should be attributed to the change of shape and distribution of delta ferrites.The shape of delta ferrites tends to transfer from polygon to sphere with dissolution time,causing the decrease of specific surface area of delta ferrites.The distribution position of delta ferrites tends to transfer from boundaries of austenite grains to interior of austenite grains with dissolution time,decreasing the diffusion coefficient of alloy atoms.Both them decrease the dissolution rate of delta ferrites.
基金Project supported by the National Natural Science Foundation of China(Nos.11672265,11202182,and 11621062)the Fundamental Research Funds for the Central Universities(Nos.2016QNA4026 and2016XZZX001-05)the Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering
文摘A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin ionic conductor films are obtained from the three-dimensional(3D) equations by power series expansions in the film thickness coordinate, retaining the lower-order equations. The thin-film equations for ionic conductors are combined with similar equations for one thin dielectric film to derive the 2D equations of thin sandwich films composed of a dielectric layer and two ionic conductor layers. A sandwich film in the literature, as an ionic cable, is analyzed as an example of the equations obtained in this paper. The numerical results show the effect of diffusion in addition to the conduction treated in the literature. The obtained theoretical model including both conduction and diffusion phenomena can be used to investigate the performance of ionic-conductor devices with any frequency.
基金This work was financially supported by the Science&Technology Department of Sichuan Province,China(No.2017KJT0110).
文摘To improve the oxidation properties of ferritic heat-resistant steels,an Al-bearing 9Cr‒5Si‒3Al ferritic heat-resistant steel was designed.We then conducted cyclic oxidation tests to investigate the high-temperature oxidation behavior of 9Cr‒5Si and 9Cr‒5Si‒3Al ferritic heat-resistant steels at 900 and 1000℃.The characteristics of the oxide layer were analyzed by X-ray diffraction,scanning electron microscopy,and energy dispersive spectroscopy.The results show that the oxidation kinetics curves of the two tested steels follow the parabolic law,with the parabolic rate constant kp of 9Cr‒5Si‒3Al steel being much lower than that of 9Cr‒5Si steel at both 900 and 1000℃.The oxide film on the surface of the 9Cr‒5Si alloy exhibits Cr2MnO4 and Cr2O3 phases in the outer layer after oxidation at 900 and 1000℃.However,at oxidation temperatures of 900 and 1000℃,the oxide film of the 9Cr‒5Si‒3Al alloy consists only of Al2O3 and its oxide layer is thinner than that of the 9Cr‒5Si alloy.These results indicate that the addition of Al to the 9Cr‒5Si steel can improve its high-temperature oxidation resistance,which can be attributed to the formation of a continuous and compact Al2O3 film on the surface of the steel.