期刊文献+
共找到56,761篇文章
< 1 2 250 >
每页显示 20 50 100
A review of ultra-high temperature heat-resistant energetic materials
1
作者 Rongzheng Zhang Yuangang Xu +4 位作者 Feng Yang Pengcheng Wang Qiuhan Lin Hui Huang Ming Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期33-57,共25页
Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed tha... Heat-resistant energetic materials refer to a type of energetic materials that possess a high melting point,high stability and operational safety. By studying the structures of these energetic materials has showed that the thermal stability can be enhanced by introducing amino groups to form intra/inter-molecular hydrogen bonds, constructing conjugate systems and designing symmetrical structures. This article aims to review the physical and chemical properties of ultra-high temperature heat-resistant energetic compounds and provide valuable theoretical insights for the preparation of ultra-high temperature heatresistant energetic materials. We also analyze the selected 20 heat-resistant energetic materials with decomposition temperatures higher than 350℃, serving as templates for the synthesis of various highperformance heat-resistant energetic materials. 展开更多
关键词 heat-resistant energetic materials Organic synthesis CONJUGATED Hydrogen bond Symmetrical structure STABILIZATION
下载PDF
Achieving a high-strength dissimilar joint of T91 heat-resistant steel to 316L stainless steel via friction stir welding 被引量:2
2
作者 Zhiwei Wang Min Zhang +6 位作者 Cong Li Fenglei Niu Hao Zhang Peng Xue Dingrui Ni Bolv Xiao Zongyi Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期166-176,共11页
The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-q... The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultrasupercritical power generation unit and nuclear fusion reactor,but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods.Here we improved the structure-property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding.A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed.The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding.No obvious material softening was detected in the joint except a negligible hardness decline of only HV~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase.The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone.This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels. 展开更多
关键词 heat-resistant steel stainless steel friction stir welding dissimilar welding MICROSTRUCTURE mechanical property
下载PDF
Microstructure and mechanical properties of a cast heat-resistant rare-earth magnesium alloy 被引量:1
3
作者 Xiao-ping Zhu Jun-qing Yao +6 位作者 Hai-long Wu Xin-wang Liu Hua Liu Zi-tian Fan Shu-lin Lü Kai Wang Zi-dong Wang 《China Foundry》 SCIE CAS CSCD 2023年第4期289-298,共10页
Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,ne... Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,net-shaped Mg5RE and Zr-rich phases.According to aging hardening curves and tensile properties variation,the optimized condition of solution treatment at 520℃for 8 h and subsequent aging at 204℃for 12 h was selected.The continuous secondary Mg5RE phase predominantly formed at grain boundaries during solidification transforms to residual discontinuousβ-Mg5RE phase and fine cuboid REH2particles after heat treatment.The annealed alloy exhibits good comprehensive tensile property at 350℃,with ultimate tensile strength of 153 MPa and elongation to fracture of 6.9%.Segregation of RE elements and eventually RE-rich precipitation at grain boundaries are responsible for the high strength at elevated temperature. 展开更多
关键词 heat-resistant magnesium alloy rare earth microstructure phase transformation tensile property strengthening
下载PDF
Succinylation modification:a potential therapeutic target in stroke 被引量:2
4
作者 Jie Lian Wenwu Liu +1 位作者 Qin Hu Xiaohua Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期781-787,共7页
Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Imp... Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology.Recently,a new type of posttranslational modification,known as lysine succinylation,has been recognized to play a significant role in mitochondrial energy metabolism after ischemia.However,the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood.We aimed to review the effects of succinylation on energy metabolism,reactive oxygen species generation,and neuroinflammation,as well as Sirtuin 5 mediated desuccinylation after stroke.We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke.The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases.Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes.Sirtuins,especially Sirtuin 5,are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes.Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke.Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism,and neuroprotective effects of these agents have been observed in experimental stroke studies.However,their therapeutic efficacy in stroke patients should be validated. 展开更多
关键词 mitochondria metabolism NEUROPROTECTION sirtuin 5 STROKE succinylation modification
下载PDF
Genetically modified non-human primate models for research on neurodegenerative diseases 被引量:2
5
作者 Ming-Tian Pan Han Zhang +1 位作者 Xiao-Jiang Li Xiang-Yu Guo 《Zoological Research》 SCIE CSCD 2024年第2期263-274,共12页
Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(... Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis. 展开更多
关键词 NEURODEGENERATION Non-human primate Macaque monkey Animal model Gene modification
下载PDF
The skeleton of 5,7-fused bicyclic imidazole-diazepine for heat-resistant energetic materials
6
作者 Xiaoxiao Zheng Yubing Xue +2 位作者 Changhao Dai Hongwei Yang Guangbin Cheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期193-199,共7页
In light of the low yields and complex reaction routes of some well-known 5,5-fused and 5,6-fused bicyclic compounds,a series of 5,7-fused bicyclic imidazole-diazepine compounds were developed with high yields by only... In light of the low yields and complex reaction routes of some well-known 5,5-fused and 5,6-fused bicyclic compounds,a series of 5,7-fused bicyclic imidazole-diazepine compounds were developed with high yields by only two efficient steps.Significantly,the seven-membered heterocyclic ring has a stable energetic skeleton with multiple modifiable sites.However,the 5,7-fused bicyclic energetic compounds were rarely reported in the area of energetic materials.Three neutral compounds 1,2 and 4 were synthesized in this work.To improve the detonation performances of the 5,7-fused neutral compounds,corresponding perchlorate 1a and 2a were further developed.The physicochemical and energetic performances of all newly developed compounds were experimentally determined.All newly prepared energetic compounds exhibit high decomposition temperatures(Td:243.8-336℃)and low mechanical sensitivities(IS:>15 J,FS:>280 N).Among them,the velocities performances of 1a(Dv=7651 m/s)and 4(Dv=7600 m/s)are comparable to that of typical heat-resistant energetic material HNS(Dv=7612 m/s).Meanwhile,the high decomposition temperature and low mechanical sensitivities(Td=336℃;IS=32 J;FS>353 N)of 4 are superior to that of HNS(Td=318℃;IS=5 J;FS=250 N).Hence,the 5,7-fused bicyclic compounds with high thermostability,low sensitivities and adjustable detonation performance have a clear tendency to open up a new space for the development of heat-resistant energetic materials. 展开更多
关键词 Imidazole-diazepine heat-resistant material 5 7-Fused skeleton Energetic materials
下载PDF
Dysregulation of RNA modification systems in clinical populations with neurocognitive disorders 被引量:4
7
作者 Helen M.Knight Merve DemirbugenÖz Adriana PerezGrovas-Saltijeral 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1256-1261,共6页
The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNA... The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNAs,tRNA,mt-tRNA,and rRNA species as well as non-coding RNAs.With emerging knowledge of RNA binding proteins that act as writer,reader,and eraser effector proteins,comes a new understanding of physiological processes controlled by these systems.Such processes when spatiotemporally disrupted within cellular nanodomains in highly specialized tissues such as the brain,give rise to different forms of disease.In this review,we discuss accumulating evidence that changes in the m^(6)A and m^(5)C methylation systems contribute to neurocognitive disorders.Early studies first identified mutations within FMR1 to cause intellectual disability Fragile X syndromes several years before FMR1 was identified as an m^(6)A RNA reader protein.Subsequently,familial mutations within the m^(6)A writer gene METTL5,m^(5)C writer genes NSUN2,NSUN3,NSUN5,and NSUN6,as well as THOC2 and THOC6 that form a protein complex with the m^(5)C reader protein ALYREF,were recognized to cause intellectual development disorders.Similarly,differences in expression of the m^(5)C writer and reader effector proteins,NSUN6,NSUN7,and ALYREF in brain tissue are indicated in individuals with Alzheimer's disease,individuals with a high neuropathological load or have suffered traumatic brain injury.Likewise,an abundance of m^(6)A reader and anti-reader proteins are reported to change across brain regions in Lewy bodies diseases,Alzheimer's disease,and individuals with high cognitive reserve.m^(6)A-modified RNAs are also reported significantly more abundant in dementia with Lewy bodies brain tissue but significantly reduced in Parkinson's disease tissue,whilst modified RNAs are misplaced within diseased cells,particularly where synapses are located.In parahippocampal brain tissue,m^(6)A modification is enriched in transcripts associated with psychiatric disorders including conditions with clear cognitive deficits.These findings indicate a diverse set of molecular mechanisms are influenced by RNA methylation systems that can cause neuronal and synaptic dysfunction underlying neurocognitive disorders.Targeting these RNA modification systems brings new prospects for neural regenerative therapies. 展开更多
关键词 5-methylcytosine methylation Alzheimer's disease cognitive diseases epitranscriptomics intellectual disability Lewy body diseases N6 adenosine RNA modification
下载PDF
Comprehensive analysis of the gut microbiome and posttranslational modifications elucidates the route involved in microbiota-host interactions 被引量:1
8
作者 Hai-Yang Wang Lan-Xiang Liu +8 位作者 Xue-Yi Chen Yang-Dong Zhang Wen-Xia Li Wen-Wen Li Lian Wang Xiao-Long Mo Hong Wei Ping Ji Peng Xie 《Zoological Research》 SCIE CSCD 2024年第1期95-107,共13页
The gut microbiome interacts with the host to maintain body homeostasis,with gut microbial dysbiosis implicated in many diseases.However,the underlying mechanisms of gut microbe regulation of host behavior and brain f... The gut microbiome interacts with the host to maintain body homeostasis,with gut microbial dysbiosis implicated in many diseases.However,the underlying mechanisms of gut microbe regulation of host behavior and brain functions remain unclear.This study aimed to elucidate the influence of gut microbiota on brain functions via post-translational modification mechanisms in the presence or absence of bacteria without any stimulation.We conducted succinylome analysis of hippocampal proteins in germ-free(GF)and specific pathogen-free(SPF)mice and metagenomic analysis of feces from SPF mice.These results were integrated with previously reported hippocampal acetylome and phosphorylome data from the same batch of mice.Subsequent bioinformatics analyses revealed 584 succinylation sites on 455 proteins,including 54 up-regulated succinylation sites on 91 proteins and 99 down-regulated sites on 51 proteins in the GF mice compared to the SPF mice.We constructed a panoramic map of gut microbiota-regulated succinylation,acetylation,and phosphorylation,and identified cross-talk and relative independence between the different types of post-translational modifications in modulating complicated intracellular pathways.Pearson correlation analysis indicated that 13 taxa,predominantly belonging to the Bacteroidetes phylum,were correlated with the biological functions of post-translational modifications.Positive correlations between these taxa and succinylation and negative correlations between these taxa and acetylation were identified in the modulation of intracellular pathways.This study highlights the hippocampal physiological changes induced by the absence of gut microbiota,and proteomic quantification of succinylation,phosphorylation,and acetylation,contributing to our understanding of the role of the gut microbiome in brain function and behavioral phenotypes. 展开更多
关键词 Gut microbiota Hippocampal protein Post-translational modifications SUCCINYLATION ACETYLATION PHOSPHORYLATION
下载PDF
Enhanced Electrochemical Properties and Optimized Li^(+)Transmission Pathways of PEO/LLZTO-Based Composite Electrolytes Modified by Supramolecular Combination 被引量:1
9
作者 Zhengyi Lu Lin Peng +6 位作者 Yi Rong Enli Wang Ruhua Shi Hongxun Yang Yadong Xu Ruizhi Yang Chao Jin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期238-246,共9页
Poly(ethylene oxide)(PEO)and Li_(6.75)La_(3)Zr_(1.75)Ta_(0.25)O_(12)(LLZTO)-based composite polymer electrolytes(CPEs)are considered one of the most promising solid electrolyte systems.However,agglomeration of LLZTO w... Poly(ethylene oxide)(PEO)and Li_(6.75)La_(3)Zr_(1.75)Ta_(0.25)O_(12)(LLZTO)-based composite polymer electrolytes(CPEs)are considered one of the most promising solid electrolyte systems.However,agglomeration of LLZTO within PEO and lack of Li^(+)channels result in poor electrochemical properties.Herein,a functional supramolecular combination(CD-TFSI)consisting of activeβ-cyclodextrin(CD)supramolecular with self-assembled LiTFSI salt is selected as an interface modifier to coat LLZTO fillers.Benefiting from vast H-bonds formed betweenβ-CD and PEO matrix and/or LLZTO,homogeneous dispersion and tight interface contact are obtained.Moreover,^(6)Li NMR spectra confirm a new Li^(+)transmission pathway from PEO matrix to LLZTO ceramic then to PEO matrix in the as-prepared PEO/LLZTO@CD-TFSI CPEs due to the typical cavity structure ofβ-CD.As a proof,the conductivity is increased from 5.3×10^(-4)S cm^(-1)to 8.7×10^(-4)S cm^(-1)at 60℃,the Li^(+)transference number is enhanced from 0.38 to 0.48,and the electrochemical stability window is extended to 5.1 V versus Li/Li^(+).Li‖LiFePO_(4)CR2032 coin full cells and pouch cells prove the practical application of the as-prepared PEO/LLZTO@CD-TFSI CPEs.This work offers a new strategy of interface modifying LLZTO fillers with functional supramolecular combination to optimize PEO/LLZTO CPEs for solid lithium batteries. 展开更多
关键词 CONDUCTIVITY interfacial stability LLZTO fillers modifICATION PEO matrix
下载PDF
Genetically modified pigs:Emerging animal models for hereditary hearing loss 被引量:1
10
作者 Xiao Wang Tian-Xia Liu +7 位作者 Ying Zhang Liang-Wei Xu Shuo-Long Yuan A-Long Cui Wei-Wei Guo Yan-Fang Wang Shi-Ming Yang Jian-Guo Zhao 《Zoological Research》 SCIE CSCD 2024年第2期284-291,共8页
Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e... Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models. 展开更多
关键词 PIGS Animal models Hereditary hearing loss Genetic modification Inner ear
下载PDF
Surface-modified Ag@Ru-P25 for photocatalytic CO_(2) conversion with high selectivity over CH_(4) formation at the solid–gas interface 被引量:3
11
作者 Chaitanya B.Hiragond Sohag Biswas +8 位作者 Niket SPowar Junho Lee Eunhee Gong Hwapyong Kim Hong Soo Kim Jin-Woo Jung Chang-Hee Cho Bryan M.Wong Su-Il In 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期182-196,共15页
Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar f... Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar fuels.A surface-modified Ag@Ru-P25 photocatalyst with H_(2)O_(2) treatment was designed in this study to convert CO_(2) and H_(2)O vapor into highly selective CH4.Ru doping followed by Ag nanoparticles(NPs)cocatalyst deposition on P25(TiO_(2))enhances visible light absorption and charge separation,whereas H_(2)O_(2) treatment modifies the surface of the photocatalyst with hydroxyl(–OH)groups and promotes CO_(2) adsorption.High-resonance transmission electron microscopy,X-ray photoelectron spectroscopy,X-ray absorption near-edge structure,and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst,while thermogravimetric analysis,CO_(2) adsorption isotherm,and temperature programmed desorption study were performed to examine the significance of H_(2)O_(2) treatment in increasing CO_(2) reduction activity.The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO_(2) reduction activity into CO,CH4,and C2H6 with a~95%selectivity of CH4,where the activity was~135 times higher than that of pristine TiO_(2)(P25).For the first time,this work explored the effect of H_(2)O_(2) treatment on the photocatalyst that dramatically increases CO_(2) reduction activity. 展开更多
关键词 gas-phase CO_(2) reduction H_(2)O_(2) treatment plasmonic nanoparticles solar fuel photocatalyst surface modification
下载PDF
Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries 被引量:1
12
作者 Changchun Fan Weijia Meng Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期79-110,I0003,共33页
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi... Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs. 展开更多
关键词 Aqueous zinc metal batteries Zinc metal anode Interfacial modification Artificial interfacial coating In-situ interfacial coating
下载PDF
A concise review on surface and structural modification of porous zeolite scaffold for enhanced hydrogen storage
13
作者 B.A.Abdulkadir R.S.R.Mohd Zaki +4 位作者 A.T.Abd Wahab S.N.Miskan Anh-Tam Nguyen Dai-Viet N.Vo H.D.Setiabudi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期33-53,共21页
Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties.Nevertheless,the storage capacity of the unmodified zeolites has been rather unsat... Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties.Nevertheless,the storage capacity of the unmodified zeolites has been rather unsatisfactory(0.224%-1.082%(mass))compared to its modified counterpart.Thus,the contemporary focus on enhancing hydrogen storage capacities has led to significant attention towards the utilization of modified zeolites,with studies exploring surface modifications through physical and chemical treatments,as well as the integration of various active metals.The enhanced hydrogen storage properties of zeolites are attributed to the presence of aluminosilicates from alkaline and alkaline-earth metals,resulting in increased storage capacity through interactions with the charge density of these aluminosilicates.Therefore,there is a great demand to critically review their role such as well-defined topology,pore structure,good thermal stability,and tunable hydrophilicity in enhanced hydrogen storage.This article aimed to critically review the recent research findings based on modified zeolite performance for enhanced hydrogen storage.Some of the factors affecting the hydrogen storage capacities of zeolites that can affect the rate of reaction and the stability of the adsorbent,like pressure,structure,and morphology were studied,and examined.Then,future perspectives,recommendations,and directions for modified zeolites were discussed. 展开更多
关键词 Zeolites Hydrogen storage Surface modification Adsorption Active metal
下载PDF
Quantifying source-sink relationships in leaf-color modified rice genotypes during grain filling
14
作者 Zhenxiang Zhou Paul CStruik +4 位作者 Junfei Gu Peter E.L.van der Putten Zhiqin Wang Jianchang Yang Xinyou Yin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期2923-2940,共18页
Leaf-color modification can affect canopy photosynthesis,with potential effects on rice yield and yield components.Modulating source-sink relationships through crop management is often used to improve crop productivit... Leaf-color modification can affect canopy photosynthesis,with potential effects on rice yield and yield components.Modulating source-sink relationships through crop management is often used to improve crop productivity.This study investigated whether and how modifying leaf color alters source-sink relationships and whether current crop cultivation practices remain applicable for leaf-color modified genotypes.Periodically collected data of total biomass and nitrogen(N)accumulation in rice genotypes of four genetic backgrounds and their leaf-color modified variants(greener or yellower)were analyzed,using a recently established modelling method to quantify the source-sink(im)balance during grain filling.Among all leaf-color variants,only one yellower-leaf variant showed a higher source capacity than its normal genotype.This was associated with greater post-flowering N-uptake that prolonged the functional leaf-N duration,and this greater post-flowering N-uptake was possible because of reduced pre-flowering N-uptake.A density experiment showed that current management practices(insufficient planting density accompanied by abundant N application)are unsuitable for the yellower-leaf genotype,ultimately limiting its yield potential.Leaf-color modification affects source-sink relationships by regulating the N trade-off between pre-and post-flowering uptake,as well as N translocation between source and sink organs.To best exploit leaf-color modification for improving crop productivity,adjustments of crop management practices are required. 展开更多
关键词 source-sink relationship biomass nitrogen Oryza sativa leaf-color modification
下载PDF
Emerging perovskite materials for supercapacitors:Structure,synthesis,modification,advanced characterization,theoretical calculation and electrochemical performance
15
作者 Yuehua Qian Qingqing Ruan +1 位作者 Mengda Xue Lingyun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期41-70,I0003,共31页
As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this r... As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction. 展开更多
关键词 PEROVSKITE modification engineering Oxygen vacancy Theoretical calculation methodology SUPERCAPACITOR
下载PDF
Silica-modified Pt/TiO_(2) catalysts with tunable suppression of strong metal-support interaction for cinnamaldehyde hydrogenation
16
作者 Zhengjian Hou Yuanyuan Zhu +6 位作者 Hua Chi Li Zhao Huijie Wei Yanyan Xi Lishuang Ma Xiang Feng Xufeng Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期189-198,共10页
Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob... Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed. 展开更多
关键词 Pt catalyst Silica modification HYDROGENATION CINNAMALDEHYDE Strong metal-support interaction
下载PDF
Influence of laser parameters on the microstructures and surface properties in laser surface modification of biomedical magnesium alloys
17
作者 Chee Ying Tan Cuie Wen Hua Qian Ang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期72-97,共26页
Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machi... Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique. 展开更多
关键词 BIOCOMPATIBILITY BIODEGRADABILITY Corrosion Implant applications Laser surface modification Magnesium alloys
下载PDF
Effect of surface modification on the radiation stability of diamond ohmic contacts
18
作者 牟恋希 赵上熳 +7 位作者 王鹏 原晓芦 刘金龙 朱志甫 陈良贤 魏俊俊 欧阳晓平 李成明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期444-448,共5页
The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarizatio... The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarization effect.However,the radiation stability of a diamond detector is also sensitive to surface modification.In this work,the influence of surface modification technology on a diamond ohmic contact under high-energy radiation was investigated.Before radiation,the specific contact resistivities(ρc)between Ti/Pt/Au-hydrogen-terminated diamond(H-diamond)and Ti/Pt/Au-oxygenterminated diamond(O-diamond)were 2.0×10^(-4)W·cm^(2) and 4.3×10^(-3)Wcm^(2),respectively.After 10 MeV electron radiation,the ρc of Ti/Pt/Au H-diamond and Ti/Pt/Au O-diamond were 5.3×10^(-3)W·cm^(2)and 9.1×10^(-3)W·cm^(2),respectively.The rates of change of ρc of H-diamond and O-diamond after radiation were 2550%and 112%,respectively.The electron radiation promotes bond reconstruction of the diamond surface,resulting in an increase in ρc. 展开更多
关键词 single crystal diamond ohmic contact surface modification electron radiation
下载PDF
Coupling effect of cement-stabilization and biopolymer-modification on the mechanical behavior of dredged sediment
19
作者 Lei Lang Jiangshan Li +2 位作者 Xiao Huang Ping Wang Wei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3284-3298,共15页
Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredg... Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredged sediment(CDS)with high water content is still unknown.In this study,guar gum(GG)and xanthan gum(XG)were adopted as typical biopolymers,and a series of unconfined compressive strength(UCS),splitting tensile strength(STS)and scanning electron microscopy(SEM)tests were performed to evaluate the mechanical and microstructural properties of XG-and GG-modified CDSs considering several factors including biopolymer modification,binderesoil ratio and wateresolid ratio.Furthermore,the micro-mechanisms revealing the evolutions of mechanical properties of biopolymermodified CDS were analyzed.The results indicate that the addition of XG can effectively improve the strength of CDS,while the GG has a side effect.The XG content of 9%was recommended,which can improve the 7 d-and 28 d-UCSs by 196%and 51.8%,together with the 7 d-and 28 d-STSs by 118.3%and 42.2%,respectively.Increasing the binderesoil ratio or decreasing the wateresolid ratio significantly improved the strength gaining but aggravated the brittleness characteristics of CDS.Adding XG to CDS contributed to the formation of microstructure with more compactness and higher cementation degrees of ordinary Portland cement(OPC)-XG-stabilized DS(CXDS).The micro-mechanism models revealing the interactions of multiple media including OPC cementation,biopolymer film bonding and bridging effects inside CXDS were proposed.The key findings confirm the feasibility of XG modification as a green and high-efficiency mean for improving the mechanical properties of CDS. 展开更多
关键词 Dredged sediment(DS) STABILIZATION Biopolymer modification Mechanical properties MICRO-MECHANISM
下载PDF
Fabrication of Silane and Desulfurization Ash Composite Modified Polyurethane and Its Interfacial Binding Mechanism
20
作者 吴旺华 CHEN Shuichang +4 位作者 YE Haodong 李世迁 LIN Yuanzhi 陈庆华 XIAO Liren 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期288-297,共10页
Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration ... Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration of DA as hard segments into the PU molecular chain.The effects of DA content(φ)on the mechanical properties,thermal stability,and hydrophobicity of PU,both before and after the addition of KH550,were thoroughly examined.The results of microscopic mechanism analysis confirmed that KH550 chemically modified the surface of DA,facilitating its incorporation into the polyurethane molecular chain,thereby significantly enhancing the compatibility and dispersion of DA within the PU matrix.When the mass fraction of modified DA(MDA)reached 12%,the mechanical properties,thermal stability,and hydrophobicity of the composites were substantially improved,with the tensile strength reaching 14.9 MPa,and the contact angle measuring 100.6°. 展开更多
关键词 POLYURETHANE silane coupling agent desulfurization ash modification mechanical property HYDROPHOBICITY thermal stability
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部