期刊文献+
共找到1,036篇文章
< 1 2 52 >
每页显示 20 50 100
A Novel Parameter-Optimized Recurrent Attention Network for Pipeline Leakage Detection 被引量:2
1
作者 Tong Sun Chuang Wang +2 位作者 Hongli Dong Yina Zhou Chuang Guan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1064-1076,共13页
Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing... Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing DL methods have difficulty in achieving good performance in identifying leakage types due to the complex time dynamics of pipeline data.On the other hand,the initial parameter selection in the detection model is generally random,which may lead to unstable recognition performance.For this reason,a hybrid DL framework referred to as parameter-optimized recurrent attention network(PRAN)is presented in this paper to improve the accuracy of PLD.First,a parameter-optimized long short-term memory(LSTM)network is introduced to extract effective and robust features,which exploits a particle swarm optimization(PSO)algorithm with cross-entropy fitness function to search for globally optimal parameters.With this framework,the learning representation capability of the model is improved and the convergence rate is accelerated.Moreover,an anomaly-attention mechanism(AM)is proposed to discover class discriminative information by weighting the hidden states,which contributes to amplifying the normalabnormal distinguishable discrepancy,further improving the accuracy of PLD.After that,the proposed PRAN not only implements the adaptive optimization of network parameters,but also enlarges the contribution of normal-abnormal discrepancy,thereby overcoming the drawbacks of instability and poor generalization.Finally,the experimental results demonstrate the effectiveness and superiority of the proposed PRAN for PLD. 展开更多
关键词 attention mechanism(AM) long shortterm memory(LSTM) parameter-optimized recurrent attention network(PRAN) particle swarm optimization(PSO) pipeline leakage detection(PLD)
下载PDF
Detecting the backfill pipeline blockage and leakage through an LSTM-based deep learning model 被引量:2
2
作者 Bolin Xiao Shengjun Miao +2 位作者 Daohong Xia Huatao Huang Jingyu Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1573-1583,共11页
Detecting a pipeline's abnormal status,which is typically a blockage and leakage accident,is important for the continuity and safety of mine backfill.The pipeline system for gravity-transport high-density backfill... Detecting a pipeline's abnormal status,which is typically a blockage and leakage accident,is important for the continuity and safety of mine backfill.The pipeline system for gravity-transport high-density backfill(GHB)is complex.Specifically designed,efficient,and accurate abnormal pipeline detection methods for GHB are rare.This work presents a long short-term memory-based deep learning(LSTM-DL)model for GHB pipeline blockage and leakage diagnosis.First,an industrial pipeline monitoring system was introduced using pressure and flow sensors.Second,blockage and leakage field experiments were designed to solve the problem of negative sample deficiency.The pipeline's statistical characteristics with different working statuses were analyzed to show their complexity.Third,the architecture of the LSTM-DL model was elaborated on and evaluated.Finally,the LSTM-DL model was compared with state-of-the-art(SOTA)learning algorithms.The results show that the backfilling cycle comprises multiple working phases and is intermittent.Although pressure and flow signals fluctuate stably in a normal cycle,their values are diverse in different cycles.Plugging causes a sudden change in interval signal features;leakage results in long variation duration and a wide fluctuation range.Among the SOTA models,the LSTM-DL model has the highest detection accuracy of98.31%for all states and the lowest misjudgment or false positive rate of 3.21%for blockage and leakage states.The proposed model can accurately recognize various pipeline statuses of complex GHB systems. 展开更多
关键词 mine backfill blockage and leakage pipeline detection long short-term memory networks deep learning
下载PDF
Prediction of Leakage from an Axial Piston Pump Slipper with Circular Dimples Using Deep Neural Networks 被引量:2
3
作者 Ozkan Ozmen Cem Sinanoglu +1 位作者 Abdullah Caliskan Hasan Badem 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期111-121,共11页
Oil leakage between the slipper and swash plate of an axial piston pump has a significant effect on the efficiency of the pump.Therefore,it is extremely important that any leakage can be predicted.This study investiga... Oil leakage between the slipper and swash plate of an axial piston pump has a significant effect on the efficiency of the pump.Therefore,it is extremely important that any leakage can be predicted.This study investigates the leakage,oil film thickness,and pocket pressure values of a slipper with circular dimples under different working conditions.The results reveal that flat slippers suffer less leakage than those with textured surfaces.Also,a deep learning-based framework is proposed for modeling the slipper behavior.This framework is a long short-term memory-based deep neural network,which has been extremely successful in predicting time series.The model is compared with four conventional machine learning methods.In addition,statistical analyses and comparisons confirm the superiority of the proposed model. 展开更多
关键词 Slipper leakage Circular dimpled Long short-term memory Deep neural network
下载PDF
Convolutional Neural Network-based Leakage Detection of Crude Oil Transmission Pipes 被引量:2
4
作者 Anqi LI Dongxu YE +1 位作者 Clarence W.DE SILVA Max Q.-H.MENG 《Instrumentation》 2019年第4期85-94,共10页
Due to the rapid development in the petroleum industry,the leakage detection of crude oil transmission pipes has become an increasingly crucial issue.At present,oil plants at home and abroad mostly use manual inspecti... Due to the rapid development in the petroleum industry,the leakage detection of crude oil transmission pipes has become an increasingly crucial issue.At present,oil plants at home and abroad mostly use manual inspection method for detection.This traditional method is not only inefficient but also labor-intensive.The present paper proposes a novel convolutional neural network(CNN)architecture for automatic leakage level assessment of crude oil transmission pipes.An experimental setup is developed,where a visible camera and a thermal imaging camera are used to collect image data and analyze various leakage conditions.Specifically,images are collected from various pipes with no leaking and different leaking states.Apart from images from existing pipelines,images are collected from the experimental setup with different types of joints to simulate leakage conditions in the real world.The main contributions of the present paper are,developing a convolutional neural network to classify the information in red-green-blue(RGB)and thermal images,development of the experimental setup,conducting leakage experiments,and analyzing the data using the developed approach.By successfully combining the two types of images,the proposed method is able to achieve a higher classification accuracy,compared to other methods that use RGB images or thermal images alone.Especially,compared with the method that uses thermal images only,the accuracy increases from about 91%to over 96%. 展开更多
关键词 Pipeline leakage Convolutional Neural network RGB Images Thermal Images Data Fusion
下载PDF
Quantitative Interpretation for the Magnetic Flux Leakage Testing Data Based on Neural Network
5
作者 SONG Xiaochun~(1.2) HUANG Songling~1 ZHAO Wei~1 1.State Key Lab of Power Systems,Dept.of Electrical Engineering,Tsinghna University,Beijing 100084,China 2.School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S2期443-447,共5页
In order to interpret the magnetic flux leakage (MFL) testing data quantitatively and size the defects accurately, some defect profiles inversion methods from the MFL signals are studied on the basis of the neural net... In order to interpret the magnetic flux leakage (MFL) testing data quantitatively and size the defects accurately, some defect profiles inversion methods from the MFL signals are studied on the basis of the neural network.Because the wavelet ba- sis function neural network (WBFNN) has good accuracy in the forward calculation and the radial basis function neural network (RBFNN) has reliable precision in the inversion modeling respectively,a new neural network scheme combining WBFNN and RBFNN is presented to solve the nonlinear inversion problem for the MFL data and reconstruct the defect shapes.And such details as the choice of wavelet basis function,the initialization of the weight value and the input normalization are analyzed,the train- ing and testing algorithm for the network are also studied.The inversion results demonstrate that the proposed network scheme has good reliability to interpret the MFL data for some defects. 展开更多
关键词 NEURAL networks magnetic FLUX leakage(MFL) QUANTITATIVE INTERPRETATION NONDESTRUCTIVE testing
下载PDF
Dynamic Analysis of Fractional-Order Fuzzy BAM Neural Networks with Delays in the Leakage Terms
6
作者 Pan Wang Jianwei Shen 《Applied Mathematics》 2017年第12期1808-1819,共12页
In this paper, based on the theory of fractional-order calculus, we obtain some sufficient conditions for the uniform stability of fractional-order fuzzy BAM neural networks with delays in the leakage terms. Moreover,... In this paper, based on the theory of fractional-order calculus, we obtain some sufficient conditions for the uniform stability of fractional-order fuzzy BAM neural networks with delays in the leakage terms. Moreover, the existence, uniqueness and stability of its equilibrium point are also proved. A numerical example is presented to demonstrate the validity and feasibility of the proposed results. 展开更多
关键词 FRACTIONAL-ORDER Fuzzy BAM Neural networks UNIFORM Stability Delay leakage TERMS
下载PDF
New Results of Global Asymptotical Stability for Impulsive Hopfield Neural Networks with Leakage Time-Varying Delay
7
作者 Qiang Xi 《Journal of Applied Mathematics and Physics》 2017年第11期2112-2126,共15页
In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kr... In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kravsovskii functional, model transformation and some analysis techniques. The criterion of stability depends on the impulse and the bounds of the leakage time-varying delay and its derivative, and is presented in terms of a linear matrix inequality (LMI). 展开更多
关键词 Global Asymptotical Stability HOPFIELD Neural networks leakage Time-Varying Delay Impulse Lyapunov-Kravsovskii Functional Linear Matrix INEQUALITY
下载PDF
Existence and Exponential Stability of Almost Periodic Solutions to General BAM Neural Networks with Leakage Delays on Time Scales
8
作者 DONG Yan-shou HAN Yan DAI Ting-ting 《Chinese Quarterly Journal of Mathematics》 2022年第2期189-202,共14页
In this paper, the existence of almost periodic solutions to general BAM neural networks with leakage delays on time scales is first studied, by using the exponential dichotomy method of linear differential equations ... In this paper, the existence of almost periodic solutions to general BAM neural networks with leakage delays on time scales is first studied, by using the exponential dichotomy method of linear differential equations and fixed point theorem. Then, the exponential stability of almost periodic solutions to such BAM neural networks on time scales is discussed by utilizing differential inequality. Finally, an example is given to support our results in this paper and the results are up-to-date. 展开更多
关键词 Almost periodic solution Neural network Time scale leakage delay Existence and exponential stability
下载PDF
一类具有Leakage时滞的惯性Cohen-Grossberg神经网络的全局指数稳定性和Hopf分支 被引量:3
9
作者 田晓红 徐瑞 王志丽 《高校应用数学学报(A辑)》 CSCD 北大核心 2016年第4期428-440,共13页
研究一类具有Leakage时滞的惯性Cohen-Grossberg神经网络模型.通过构造适当的Lyapunov泛函得到了平衡点全局指数稳定的充分条件.通过分析特征方程,讨论了系统平衡点的局部稳定性,得出了系统Hopf分支存在的充分条件.最后对所得理论结果... 研究一类具有Leakage时滞的惯性Cohen-Grossberg神经网络模型.通过构造适当的Lyapunov泛函得到了平衡点全局指数稳定的充分条件.通过分析特征方程,讨论了系统平衡点的局部稳定性,得出了系统Hopf分支存在的充分条件.最后对所得理论结果进行了数值模拟. 展开更多
关键词 惯性Cohen-Grossberg神经网络模型 leakage时滞 HOPF分支 全局指数稳定性
下载PDF
具有leakage项时滞与脉冲影响的反应扩散细胞神经网络指数同步 被引量:1
10
作者 耿立杰 李彦路 徐瑞 《北华大学学报(自然科学版)》 CAS 2013年第5期502-507,共6页
研究了具有leakage项时滞与脉冲影响的反应扩散细胞神经网络全局指数同步问题,通过构造恰当的Lyapunov泛函并利用一些不等式分析技巧,得到了基于p-范数的耦合神经网络系统全局指数同步条件,结果分析表明较大的扩散系数更有利于系统实现... 研究了具有leakage项时滞与脉冲影响的反应扩散细胞神经网络全局指数同步问题,通过构造恰当的Lyapunov泛函并利用一些不等式分析技巧,得到了基于p-范数的耦合神经网络系统全局指数同步条件,结果分析表明较大的扩散系数更有利于系统实现同步. 展开更多
关键词 指数同步 模糊细胞神经网络 反应扩散 leakage项时滞
下载PDF
一类具有Leakage时滞的分数阶神经网络的Hopf分支(英文) 被引量:1
11
作者 田晓红 徐瑞 《应用数学》 CSCD 北大核心 2017年第2期350-358,共9页
本文研究一类具有leakage时滞的分数阶神经网络.通过分析特征方程,讨论系统平凡稳态解的局部稳定性和Hopf分支的存在性.最后对所得理论结果进行了数值模拟.
关键词 分数阶神经网络 HOPF分支 leakage时滞
下载PDF
具有leakage时滞的随机T-S模糊神经网络的稳定性
12
作者 李哲 徐瑞 《北华大学学报(自然科学版)》 CAS 2012年第3期259-266,共8页
研究了一类具有leakage时滞的随机T-S模糊神经网络的稳定性,通过构造一个新的Lyapunov-Krasovskii泛函,并应用It公式、随机不等式技术,得到了基于线性矩阵不等式(LMI)的均方意义下的全局稳定性判定条件.
关键词 leakage时滞 T-S模糊 随机神经网络 稳定性
下载PDF
具有leakage时滞的随机马尔科夫跳变神经网络的稳定性
13
作者 李哲 李彦路 耿立杰 《军械工程学院学报》 2012年第6期73-76,共4页
研究一类具有leakage时滞的随机马尔科夫跳变神经网络的稳定性,通过构造一个新的Lyapunov-Kra—sovskii泛函,并应用It6公式、随机不等式技术,得到了基于线性矩阵不等式(LMI)的均方意义下的全局稳定性判定条件.
关键词 稳定性 随机神经网络 马尔科夫跳变 leakage时滞
下载PDF
具有leakage时滞与传输时滞的神经网络的分支
14
作者 李哲 徐瑞 《军械工程学院学报》 2014年第2期71-74,共4页
研究一类具有leakage时滞与传输时滞的两神经元神经网络的分支,分别以leakage时滞和传输时滞为分支参数,通过对模型对应的特征方程进行分析,得到出现Hopf分支的临界性条件,并通过数值例子验证该理论结果.
关键词 神经网络 leakage时滞 分支
下载PDF
基于时滞分割法的具有leakage项时滞的离散型神经网络状态估计
15
作者 耿立杰 徐瑞 《军械工程学院学报》 2013年第1期74-78,共5页
摘要:研究一类具有leakage时滞的离散型神经网络的状态估计问题.通过构造新的Lyapunov泛函得到保证估计误差全局渐近稳定的充分条件,并通过求解一个线性矩阵不等式(LMI)得到状态估计器的增益矩阵.采用一种新的时滞分割方法将变时... 摘要:研究一类具有leakage时滞的离散型神经网络的状态估计问题.通过构造新的Lyapunov泛函得到保证估计误差全局渐近稳定的充分条件,并通过求解一个线性矩阵不等式(LMI)得到状态估计器的增益矩阵.采用一种新的时滞分割方法将变时滞区间分割为多个子区间,使该结果在获得更小的保守性同时也降低了计算的复杂度. 展开更多
关键词 离散型神经网络 时滞分割 leakage时滞 状态估计 线性矩阵不等式
下载PDF
带有leakage时滞的神经网络周期解的稳定性
16
作者 王慧 《攀枝花学院学报》 2008年第3期34-36,共3页
利用模型转化技术,本文尝试着研究了带有leakage时滞的神经网络周期解的渐近稳定性,得到了依赖leakage时滞的全局渐近稳定的充分条件,具体模型的数值模拟验证了结论的正确性同时也印证了leakage时滞对系统稳定性的消极影响。
关键词 时滞 神经网络 稳定性
下载PDF
Research on leakage current test method 被引量:1
17
作者 Li Dong Wang Yanlin 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期219-223,共5页
In the leakage current test, through the high speed data collection and digital filtering to the output voltage of the human body impedance network, leakage current test that is in accordance with many kinds of electr... In the leakage current test, through the high speed data collection and digital filtering to the output voltage of the human body impedance network, leakage current test that is in accordance with many kinds of electrical safety standards can be realized, and the frequency distribution information of the leakage current can be got as well, which can be used to much more completely evaluate the possible damage degree of the leakage current to the human body and analyze the reason for the appearance of the leakage current in the electric equipment. 展开更多
关键词 leakage CURRENT TEST HUMAN BODY imspedance network
下载PDF
带有Leakage时滞脉冲神经网络的渐近稳定性
18
作者 谢祖伟 彭世国 罗营华 《广东工业大学学报》 CAS 2009年第1期25-28,共4页
讨论带有Leakage时滞的Hopfield神经网络的渐近稳定性,在非线形激励函数满足Lipschtz条件的假设下,通过构建Lyapunov泛函、Dini导数和分析技巧,建立起这一类Hopfield神经网络的渐近稳定性的易于验证的判定依据.
关键词 HOPFIELD神经网络 渐近稳定性 leakage时滞 DINI导数
下载PDF
具有Leakage变时滞的脉冲反应扩散神经网络的鲁棒指数稳定性
19
作者 卢春阁 王林山 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期146-150,共5页
研究一类具有Leakage变时滞和不确定参数的脉冲反应扩散神经网络的平衡点的鲁棒指数稳定性。所研究模型中的Leakage时滞为变时滞,脉冲既与神经元当前状态有关,又与Leakage时滞和传输时滞所产生的历史状态有关。利用Lyapunov函数、Razumi... 研究一类具有Leakage变时滞和不确定参数的脉冲反应扩散神经网络的平衡点的鲁棒指数稳定性。所研究模型中的Leakage时滞为变时滞,脉冲既与神经元当前状态有关,又与Leakage时滞和传输时滞所产生的历史状态有关。利用Lyapunov函数、Razumikhin技巧和线性矩阵不等式(LMI)方法获得了系统鲁棒指数稳定的新的判别条件。最后给出一个实例说明结果的有效性和实用性。 展开更多
关键词 反应扩散神经网络 leakage时滞 脉冲 稳定性
下载PDF
具有脉冲效应和Leakage项时滞的随机扰动模糊细胞神经网络的指数同步 被引量:1
20
作者 蒲浩 张转周 +1 位作者 赵爱亮 王来全 《安徽师范大学学报(自然科学版)》 CAS 2017年第6期529-537,共9页
研究了具有脉冲效应和Leakage项时滞的随机扰动模糊细胞神经网络的指数同步,通过李雅普诺夫稳定性理论、随机微分方程理论、随机分析法、It?'s公式及一些不等式方法,基于p-范数下得到了新的指数同步的充分条件.在本文中所考虑的脉... 研究了具有脉冲效应和Leakage项时滞的随机扰动模糊细胞神经网络的指数同步,通过李雅普诺夫稳定性理论、随机微分方程理论、随机分析法、It?'s公式及一些不等式方法,基于p-范数下得到了新的指数同步的充分条件.在本文中所考虑的脉冲效应是一般函数,而不是线性函数;还发现随机扰动和Leakage项时滞对系统同步有抑制作用. 展开更多
关键词 随机扰动 leakage项时滞 模糊细胞神经网络 脉冲效应 Ito’s公式 混合时滞 p-范数.
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部