Nanoscaled aluminum nitride (AlN) dispersion strengthened 2024 aluminum alloy was fabricated using a novel approach in which Al-Mg-Cu compacts were partially nitrided in flowing nitrogen gas. The compacts were subse...Nanoscaled aluminum nitride (AlN) dispersion strengthened 2024 aluminum alloy was fabricated using a novel approach in which Al-Mg-Cu compacts were partially nitrided in flowing nitrogen gas. The compacts were subsequently consolidated by sintering and hot extrusion. The microstructure and mechanical properties of the material were preliminarily investigated. Transmission electron microscopy and X-ray diffraction results revealed that AlN particles were generated by the nitridation of Al-Mg-Cu compacts. The material exhibited excellent mechanical properties after hot extrusion and heat treatment. The ultimate tensile and yield strengths of the extruded samples containing 8.92vol% AlN with the T6 heat treatment were 675 and 573 MPa, respectively.展开更多
The effects of large cold deformation after solution treatment on the precipitation characteristic and deformation strength of 2024 and 7A04 Al alloys were investigated.The tensile property tests indicate that the age...The effects of large cold deformation after solution treatment on the precipitation characteristic and deformation strength of 2024 and 7A04 Al alloys were investigated.The tensile property tests indicate that the ageing response of the 2024 aluminum alloy is accelerated when treated by cold deformation after solution treatment,and the tensile strength is increased to about 140 MPa while the elongation still keeps above 8%.However,compared with the 2024 alloys,although the aging response of the cold deformed 7A04 aluminum alloy is accelerated,the tensile strength has not changed obviously and the elongation is even decreased drastically.The results of TEM observation show that the S’ phase inside the dislocation cells and at the boundaries of the dislocation cells of the 2024 aluminum alloy has a uniform distribution.But in 7A04 aluminum alloy the club-shaped η’ phase forms at the boundaries of dislocation cells even on dislocation lines,while there still exists small spheric G.P zone in the region with less dislocation.In addition the precipitates in 7A04 alloy with cold rolling present more obvious tendency of growth and coarsening than those without cold rolling.It is indicated that the coherent strain energy of the cylinder formed G.P zones with matrix in the 2024 alloy is smaller than that of the spherical G.P zone in 7A04 alloy,for which a different distribution of precipitates and different effect of strengthening are caused in artificial ageing after resolution treatment and large cold deformation.展开更多
Effect of large cold deformation on the age-hardening characteristics of 2024 aluminum alloys was investigated. The results reveal: 1) the aging response is accelerated after large cold deformation, and the peak stren...Effect of large cold deformation on the age-hardening characteristics of 2024 aluminum alloys was investigated. The results reveal: 1) the aging response is accelerated after large cold deformation, and the peak strength is attained after aging for 40 min; 2) double aging peaks can be found in the age-hardening curves, and the first peak appears when aged for 40 min. The corresponding peak tensile strength (sb) and elongation are up to 580 MPa and 9.2% respectively, the second peak appears when aged for 120 min, but the peak tensile strength(520 MPa) is lower than the first one; 3) in early stage of aging (<40 min), elongation slightly increases from 8% with prolonging aging time of the alloy. Elongation markedly decreases to 2% after aging for 60 min, and shows a plateau with the prolonging of aging time on the age-elongation curve. It is indicated that the high density of dislocation introduced by large deformation accelerates the precipitation of GP zones and the aging response of the alloy. The first aging peak is due to the formation of GP zones and the deformation strengthening caused by the high density of dislocation. And the second peak present in the aging curve is attributed to the nucleation and growth of S’ phase. The offset between dislocation density decreases and precipitation S’-phase finally results in the phenomenon of double aging peaks when aged at 190 ℃. Moreover, it is suggested that the formation of PFZ and coarse equilibrium phase accompanied by the precipitation of S’ phase decrease the elongation.展开更多
Combined with theoretical evaluation, an optimized strengthening process for the semi-solid die castings of A356 aluminum alloy was obtained by studying the mechanical properties of castings solution treated and aged ...Combined with theoretical evaluation, an optimized strengthening process for the semi-solid die castings of A356 aluminum alloy was obtained by studying the mechanical properties of castings solution treated and aged under different conditions in detail, then, the semi-solid die castings and liquid die castings were heat treated with the optimized process. The results show that the mechanical properties of semi-solid die castings of aluminum alloy are superior to those of the liquid die castings, especially the strengthening degree of heat treated semi-solid die castings is much greater than that of liquid die castings with the tensile strength more than 330 MPa and the elongation more than 10%, and this is mainly contributed to the non-dendritic and more compact microstructure of semi-solid die castings. The strengthening mechanism of heat treatment for the semi-solid die castings of A356 aluminum alloy is due to the dispersive precipitation of the second phase(Mg2Si) and formation of GP Zone.展开更多
The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and agin...The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and aging treatment. The effects of minor Sc and Zr addition on microstructure, recrystallization and properties of alloys were studied by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Sc and Zr addition can refine grains of the as-cast alloy by precipitation of primary Al3(Sc,Zr) particles formed during solidification as heterogeneous nuclei. Secondary Al3(Sc,Zr) precipitates formed during homogenization treatment strongly pin the movement of dislocation and subgrain boundaries, which can effectively inhibit the alloys recrystallization. Compared with the alloy without Sc and Zr addition, the Al-Zn-Mg-Cu-Zr alloy with 0.05%Sc and 0.15%Zr shows the increase in tensile strength and yield strength by 172 MPa and 218 MPa, respectively. Strengthening comes from the contributions of precipitation, substructure and grain refining.展开更多
The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show t...The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show that the quench sensitivity of 6063 alloy is lower than that of 6061 or 6082 alloy,and the critical temperature ranges from 300 to 410℃ with the nose temperature of about 360℃.From TEM analysis,heterogeneous precipitate β-Mg2Si is prior to nucleate on the(AlxFeySiz) dispersoids in the critical temperature range,and grows up most rapidly at the nose temperature of 360℃.The heterogeneous precipitation leads to a low concentration of solute,which consequently reduces the amount of the strengthening phase β'' after aging.In the large-scale industrial production of 6063 alloy,the cooling rate during quenching should be enhanced as high as possible in the quenching sensitive temperature range(410-300℃) to suppress the heterogeneous precipitation to get optimal mechanical properties,and it should be slowed down properly from the solution temperature to 410℃ and below 300℃ to reduce the residual stress.展开更多
Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparative...Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.展开更多
An ultra-high strength aluminum alloy was produced by casting and then extruded to rods. The effect of heat treatment on the microstructure and mechanical properties of the alloy was investigated. After single ageing ...An ultra-high strength aluminum alloy was produced by casting and then extruded to rods. The effect of heat treatment on the microstructure and mechanical properties of the alloy was investigated. After single ageing (120℃, 24 h), the tensile strength was 812.4 MPa and the elongation was 6.2%. After retrogression reaging (RRA), the tensile strength was 751.2 MPa and the elongation was 6.4%. The strengthening mechanism is considered as fine grain strengthening, substructure strengthening and dispersion strengthening by Al3(Sc, Zr).展开更多
The effects of magnesium addition on the dispersoid precipitation as well as mechanical properties of 3xxx alloys wereinvestigated. The microstructures in as-cast and heat-treated conditions were evaluated by optical ...The effects of magnesium addition on the dispersoid precipitation as well as mechanical properties of 3xxx alloys wereinvestigated. The microstructures in as-cast and heat-treated conditions were evaluated by optical microscopy and transmissionelectron microscopy. The results reveal that Mg has a strong influence on the distribution and volume fraction of dispersoids duringprecipitation heat treatment. The microhardness and yield strength at ambient temperature increase with increasing Mg content. Thesolid solution and dispersoid strengthening mechanisms of materials after heat treatment are quantitatively analyzed. Dispersoidstrengthening for the alloys is the predominant strengthening mechanism after precipitation heat treatment. An analytical model isintroduced to predict the evolution of ambient-temperature yield strength.展开更多
The microstructure of dislocation in two kinds of ahiminum-lithium alloys 2090 and 2090 + Ce was observed by means of TEM technology. The contributions of δ' and T1 precipitates to strength were separately calculat...The microstructure of dislocation in two kinds of ahiminum-lithium alloys 2090 and 2090 + Ce was observed by means of TEM technology. The contributions of δ' and T1 precipitates to strength were separately calculated by using the results of quantitative metallography and analysis of micro-deformation behavior; the co-strengthening effect of δ' and T1 precipitates was studied. The results show that the adding relationship of co-strengthening of δ' and T1 is in accordance with q = 1.4 form at the near peak-aged condition, i.e., △τ^1.4δ = △τ^1.4δ+ △τ^1.4T1, but the adding relationship is approximately a linear relation (q = 1) at the under-aged condition and becomes the parabola form when over-aged (q = 2). The adding relationship of co-strengthening contribution of δ' and T1 is obviously dependent on aging time.展开更多
Considering the components produced by high pressure die casting(HPDC)process usually with ultra-large sizes and complex morphologies,high temperature solid solution treatment is not a suitable method to further impro...Considering the components produced by high pressure die casting(HPDC)process usually with ultra-large sizes and complex morphologies,high temperature solid solution treatment is not a suitable method to further improve their mechanical properties.In this study,two-stage aging treatment with different pre-aging times was designed and employed to further improve the mechanical properties of HPDC Al8SiMgCuZn alloy.The characteristics of precipitates were evaluated by a transmission electron microscope(TEM),and the precipitation strengthening mechanism was discussed.The results reveal that the strengthening is mainly contributed by the precipitation ofβ″phase after two-stage aging,and the number density and size of the precipitates are significantly depended on the pre-aging time.The number density of precipitates is increased with the pre-aging time prolonged from 0 h to 4 h,and then decreases with the further increase of pre-aging time from 4 h to 6 h.The precipitates with the highest density and smallest size are observed after pre-aging for 4 h.After pre-aged at 100℃for 4 h and then artificial aged at 200℃for 30 min,the yield strength of 207 MPa,ultimate tensile strength of 325 MPa and elongation of 7.6%are achieved.展开更多
The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and different...The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and differential scanning calorimetry(DSC).The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy;2.5%pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one,and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8%to about 1.0%,reducing quench sensitive effect.For the air-cooled alloy,pre-stretching increases the sizes ofη'strengthening precipitates but also increases their quantity and the ratio of diameter to thickness,resulting in enhanced strengthening and higher strength after aging.The reason has been discussed based on microstructure examination by TEM and DSC.展开更多
基金financially supported by the National High-Tech Research and Development Program of China (No. 2013AA031104)
文摘Nanoscaled aluminum nitride (AlN) dispersion strengthened 2024 aluminum alloy was fabricated using a novel approach in which Al-Mg-Cu compacts were partially nitrided in flowing nitrogen gas. The compacts were subsequently consolidated by sintering and hot extrusion. The microstructure and mechanical properties of the material were preliminarily investigated. Transmission electron microscopy and X-ray diffraction results revealed that AlN particles were generated by the nitridation of Al-Mg-Cu compacts. The material exhibited excellent mechanical properties after hot extrusion and heat treatment. The ultimate tensile and yield strengths of the extruded samples containing 8.92vol% AlN with the T6 heat treatment were 675 and 573 MPa, respectively.
基金Project(50571069) supported by NSFC and Project(05A061) education department of Hunan province,China
文摘The effects of large cold deformation after solution treatment on the precipitation characteristic and deformation strength of 2024 and 7A04 Al alloys were investigated.The tensile property tests indicate that the ageing response of the 2024 aluminum alloy is accelerated when treated by cold deformation after solution treatment,and the tensile strength is increased to about 140 MPa while the elongation still keeps above 8%.However,compared with the 2024 alloys,although the aging response of the cold deformed 7A04 aluminum alloy is accelerated,the tensile strength has not changed obviously and the elongation is even decreased drastically.The results of TEM observation show that the S’ phase inside the dislocation cells and at the boundaries of the dislocation cells of the 2024 aluminum alloy has a uniform distribution.But in 7A04 aluminum alloy the club-shaped η’ phase forms at the boundaries of dislocation cells even on dislocation lines,while there still exists small spheric G.P zone in the region with less dislocation.In addition the precipitates in 7A04 alloy with cold rolling present more obvious tendency of growth and coarsening than those without cold rolling.It is indicated that the coherent strain energy of the cylinder formed G.P zones with matrix in the 2024 alloy is smaller than that of the spherical G.P zone in 7A04 alloy,for which a different distribution of precipitates and different effect of strengthening are caused in artificial ageing after resolution treatment and large cold deformation.
基金Project(50571069) supported by the National Natural Science Foundation of China Project(05A061) supported by the Department of Education of Hunan Province, China
文摘Effect of large cold deformation on the age-hardening characteristics of 2024 aluminum alloys was investigated. The results reveal: 1) the aging response is accelerated after large cold deformation, and the peak strength is attained after aging for 40 min; 2) double aging peaks can be found in the age-hardening curves, and the first peak appears when aged for 40 min. The corresponding peak tensile strength (sb) and elongation are up to 580 MPa and 9.2% respectively, the second peak appears when aged for 120 min, but the peak tensile strength(520 MPa) is lower than the first one; 3) in early stage of aging (<40 min), elongation slightly increases from 8% with prolonging aging time of the alloy. Elongation markedly decreases to 2% after aging for 60 min, and shows a plateau with the prolonging of aging time on the age-elongation curve. It is indicated that the high density of dislocation introduced by large deformation accelerates the precipitation of GP zones and the aging response of the alloy. The first aging peak is due to the formation of GP zones and the deformation strengthening caused by the high density of dislocation. And the second peak present in the aging curve is attributed to the nucleation and growth of S’ phase. The offset between dislocation density decreases and precipitation S’-phase finally results in the phenomenon of double aging peaks when aged at 190 ℃. Moreover, it is suggested that the formation of PFZ and coarse equilibrium phase accompanied by the precipitation of S’ phase decrease the elongation.
文摘Combined with theoretical evaluation, an optimized strengthening process for the semi-solid die castings of A356 aluminum alloy was obtained by studying the mechanical properties of castings solution treated and aged under different conditions in detail, then, the semi-solid die castings and liquid die castings were heat treated with the optimized process. The results show that the mechanical properties of semi-solid die castings of aluminum alloy are superior to those of the liquid die castings, especially the strengthening degree of heat treated semi-solid die castings is much greater than that of liquid die castings with the tensile strength more than 330 MPa and the elongation more than 10%, and this is mainly contributed to the non-dendritic and more compact microstructure of semi-solid die castings. The strengthening mechanism of heat treatment for the semi-solid die castings of A356 aluminum alloy is due to the dispersive precipitation of the second phase(Mg2Si) and formation of GP Zone.
基金Project(0211002605132)supported by Institute of Multipurpose Utilization of Mineral Resources,Chinese Academy of Geological Sciences,ChinaProject(0211005303101)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2010BB4074)supported by Natural Science Foundation Project of CQ CSTC,ChinaProject(2010ZD-02)supported by State Key Laboratory for Advanced Metals and Materials,China
文摘The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and aging treatment. The effects of minor Sc and Zr addition on microstructure, recrystallization and properties of alloys were studied by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Sc and Zr addition can refine grains of the as-cast alloy by precipitation of primary Al3(Sc,Zr) particles formed during solidification as heterogeneous nuclei. Secondary Al3(Sc,Zr) precipitates formed during homogenization treatment strongly pin the movement of dislocation and subgrain boundaries, which can effectively inhibit the alloys recrystallization. Compared with the alloy without Sc and Zr addition, the Al-Zn-Mg-Cu-Zr alloy with 0.05%Sc and 0.15%Zr shows the increase in tensile strength and yield strength by 172 MPa and 218 MPa, respectively. Strengthening comes from the contributions of precipitation, substructure and grain refining.
文摘The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show that the quench sensitivity of 6063 alloy is lower than that of 6061 or 6082 alloy,and the critical temperature ranges from 300 to 410℃ with the nose temperature of about 360℃.From TEM analysis,heterogeneous precipitate β-Mg2Si is prior to nucleate on the(AlxFeySiz) dispersoids in the critical temperature range,and grows up most rapidly at the nose temperature of 360℃.The heterogeneous precipitation leads to a low concentration of solute,which consequently reduces the amount of the strengthening phase β'' after aging.In the large-scale industrial production of 6063 alloy,the cooling rate during quenching should be enhanced as high as possible in the quenching sensitive temperature range(410-300℃) to suppress the heterogeneous precipitation to get optimal mechanical properties,and it should be slowed down properly from the solution temperature to 410℃ and below 300℃ to reduce the residual stress.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.
基金the National Key Fundamental Research and Development Program of China(No.2005CB623706).
文摘An ultra-high strength aluminum alloy was produced by casting and then extruded to rods. The effect of heat treatment on the microstructure and mechanical properties of the alloy was investigated. After single ageing (120℃, 24 h), the tensile strength was 812.4 MPa and the elongation was 6.2%. After retrogression reaging (RRA), the tensile strength was 751.2 MPa and the elongation was 6.4%. The strengthening mechanism is considered as fine grain strengthening, substructure strengthening and dispersion strengthening by Al3(Sc, Zr).
基金the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC)Rio Tinto Aluminum through the NSERC Industry Research Chair in the Metallurgy of Aluminum Transformation at University of Quebec at Chicoutimi
文摘The effects of magnesium addition on the dispersoid precipitation as well as mechanical properties of 3xxx alloys wereinvestigated. The microstructures in as-cast and heat-treated conditions were evaluated by optical microscopy and transmissionelectron microscopy. The results reveal that Mg has a strong influence on the distribution and volume fraction of dispersoids duringprecipitation heat treatment. The microhardness and yield strength at ambient temperature increase with increasing Mg content. Thesolid solution and dispersoid strengthening mechanisms of materials after heat treatment are quantitatively analyzed. Dispersoidstrengthening for the alloys is the predominant strengthening mechanism after precipitation heat treatment. An analytical model isintroduced to predict the evolution of ambient-temperature yield strength.
文摘The microstructure of dislocation in two kinds of ahiminum-lithium alloys 2090 and 2090 + Ce was observed by means of TEM technology. The contributions of δ' and T1 precipitates to strength were separately calculated by using the results of quantitative metallography and analysis of micro-deformation behavior; the co-strengthening effect of δ' and T1 precipitates was studied. The results show that the adding relationship of co-strengthening of δ' and T1 is in accordance with q = 1.4 form at the near peak-aged condition, i.e., △τ^1.4δ = △τ^1.4δ+ △τ^1.4T1, but the adding relationship is approximately a linear relation (q = 1) at the under-aged condition and becomes the parabola form when over-aged (q = 2). The adding relationship of co-strengthening contribution of δ' and T1 is obviously dependent on aging time.
基金financially supported by the Natural Science Foundation of Guangdong Province(Nos.2021A151510042,2021A1515011728)the China Postdoctoral Science Foundation(2022M711190)+1 种基金the National Natural Science Foundation of China(No.51875211)the Key Area Research and Development Program of Guangdong Province(No.2020B010186002)。
文摘Considering the components produced by high pressure die casting(HPDC)process usually with ultra-large sizes and complex morphologies,high temperature solid solution treatment is not a suitable method to further improve their mechanical properties.In this study,two-stage aging treatment with different pre-aging times was designed and employed to further improve the mechanical properties of HPDC Al8SiMgCuZn alloy.The characteristics of precipitates were evaluated by a transmission electron microscope(TEM),and the precipitation strengthening mechanism was discussed.The results reveal that the strengthening is mainly contributed by the precipitation ofβ″phase after two-stage aging,and the number density and size of the precipitates are significantly depended on the pre-aging time.The number density of precipitates is increased with the pre-aging time prolonged from 0 h to 4 h,and then decreases with the further increase of pre-aging time from 4 h to 6 h.The precipitates with the highest density and smallest size are observed after pre-aging for 4 h.After pre-aged at 100℃for 4 h and then artificial aged at 200℃for 30 min,the yield strength of 207 MPa,ultimate tensile strength of 325 MPa and elongation of 7.6%are achieved.
基金Project(AA17202007) supported by the Special Funding for Innovation-Driven Development of Guangxi Province,China。
文摘The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and differential scanning calorimetry(DSC).The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy;2.5%pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one,and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8%to about 1.0%,reducing quench sensitive effect.For the air-cooled alloy,pre-stretching increases the sizes ofη'strengthening precipitates but also increases their quantity and the ratio of diameter to thickness,resulting in enhanced strengthening and higher strength after aging.The reason has been discussed based on microstructure examination by TEM and DSC.