Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after ox...Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after oxidation at 700 ℃ for 20 h, while that of sample B with air-fast-cooling one is only 0.98%. SEM images reveal that the coating of sample A is full of micro-holes, micro-cracks and many piece-like crystal particles, while that of sample B is integrated and compacted in glassy state with a few of micro-cracks. The coating of sample A is almost exhausted only in 8 h oxidized-test at 700 ℃, while that of sample B remains integrated after 8 h test at 700 ℃ and becomes loose due to much small pores generated after 20 h test at 700 ℃.展开更多
The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau v...The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.展开更多
The Fe-based amorphous coatings were produced by air plasma spraying. The as-sprayed coatings were heat-treated at the temperature of 573, 873, and 1 023 K, respectively. The crystallization and wear behavior of the h...The Fe-based amorphous coatings were produced by air plasma spraying. The as-sprayed coatings were heat-treated at the temperature of 573, 873, and 1 023 K, respectively. The crystallization and wear behavior of the heat-treated amorphous coatings were investigated. It was found that the amorphous- nanocrystalline transformation appeared when the as-sprayed coatings were treated at 853 K. The crystallization process had completed and a coating with microcrystallines was formed when the treatment temperature reached 1 023 K. The resultant amorphous and nanocrystalline composite coatings exhibited superior wear resistance compared to crystalline coating. It is attributed to fine grain strengthening of formed nanocrystallines.展开更多
Pinus massoniana wood was modified by steam heat-treatment at 160℃,180℃,200℃ and 220℃ respectively and effects of the changes of density,pH,surface wettability and apparent morphology of Pinus massoniana heat-trea...Pinus massoniana wood was modified by steam heat-treatment at 160℃,180℃,200℃ and 220℃ respectively and effects of the changes of density,pH,surface wettability and apparent morphology of Pinus massoniana heat-treated wood on its bonding performance were studied in this paper.The results showed that Pinus massoniana wood underwent a series of physical and chemical changes during heat-treatment as the the following:(1)The degradation of hemicellulose and cellulose with low degree of polymerization,degradation and migration of the extract resulting in the decline of density and pH of heat-treated Pinus massoniana wood.(2)Brittle fracture occured on the cell wall surface,and the pit collapse,shrink and deformation,resulting in the formation of roughness and porosity on the wood surface.(3)The surface energy decreased with the improvement of temperature,the surface wettability of Pinus massoniana wood treated at 160℃–180℃ was good,while that at 200℃–220℃ showed hydrophobicity.(4)Changes of density,pH,surface roughness and porosity,and wettability resulted in a reduction in the bonding strength and reliability of heat-treated Pinus massoniana wood with MUF resin adhesive.(5)When the temperature was at 160℃–180℃,the better wettability of heat-treated Pinus massoniana wood could guarantee the better bonding performance.展开更多
Homogeneous HA coating materials were prepared on porous titanium by the low-temperature combustion synthesis. It was found that the mechanical properties of the specimen depend on the coating process and the heat tre...Homogeneous HA coating materials were prepared on porous titanium by the low-temperature combustion synthesis. It was found that the mechanical properties of the specimen depend on the coating process and the heat treatment, and the bending strength would be reduced during the coating process but could be improved by heat treatment. The effects of the temperature during heat- treatment on the phase composition and microstructure of the as-prepared coating, and the bending strength of the specimen were investigated by XRD and SEM. The experimental results show that in the coating process, slight oxidation of the substrate may give rise to a drop in bending strength ; however, it could be increased by the reaction of HA and TiO2 , and the sintering of the coating during heat treatment. The HA particles in the coating, with very fine sized particles. were pretty active and would decompose at 800℃.展开更多
The main goals of rice breeding nowadays include increasing yield,improving grain quality,and promoting complete mechanized production to save labor costs.Rice grain shape,specified by three dimensions,including grain...The main goals of rice breeding nowadays include increasing yield,improving grain quality,and promoting complete mechanized production to save labor costs.Rice grain shape,specified by three dimensions,including grain length,width and thickness,has a more precise meaning than grain size,contributing to grain appearance quality as well as grain weight and thus yield.Furthermore,the divergence of grain shape characters could be utilized in mechanical seed sorting in hybrid rice breeding systems,which has been succeeded in utilizing heterosis to achieve substantial increase in rice yield in the past decades.Several signaling pathways that regulate rice grain shape have been elucidated,including G protein signaling,ubiquitination-related pathway,mitogen-activated protein kinase signaling,phytohormone biosynthesis and signaling,micro RNA process,and some other transcriptional regulatory pathways and regulators.This review summarized the recent progress on molecular mechanisms underlying rice grain shape determination and the potential of major genes in future breeding applications.展开更多
In the paper, the effect of heat-treatment on the strength and toughness of AIN-SiC whisker composites with Y2O3 + SiO2 additives have been studied. When the Sample confining 10wt% Y2O3+SiO2(.Y2O3/SiO2^l/0. 66) -was t...In the paper, the effect of heat-treatment on the strength and toughness of AIN-SiC whisker composites with Y2O3 + SiO2 additives have been studied. When the Sample confining 10wt% Y2O3+SiO2(.Y2O3/SiO2^l/0. 66) -was treated at 1330癈 in air for 140 hours ithe flexural strength of composites ivas raised from 481 MPa to 784 MPa the toughness ruas also enhanced slightly. The phase composi-tion infrastructure and grain boundary phase structure have been char-acterized by combining XDR, SEM, TEM/EDXA and HREM tech-niques, reinforcenent and toughening mechanism of the composites re-sults from the crystallization of glass phase in the grain boundary at the high temperature oxidizing atmosphere to form the crossing struc-ture of 2H?sialon fibrous phase and SiC whisker展开更多
In order to obtain uniform exposure in variably shaped electron beam lithography,the beam current density and edge resolution on the target must not change for different spotshapes and sizes.The key to the goal is the...In order to obtain uniform exposure in variably shaped electron beam lithography,the beam current density and edge resolution on the target must not change for different spotshapes and sizes.The key to the goal is the appropriate design of shaping deflectors.A linearand rotation compensation approach is presented.Values of linear and rotation compensationfactors versus the distances between electron source image and centers of deflectors are measuredon an experimental electron beam column with variable spot shaping.The experimental resultsare in good agreement with the calculated ones.展开更多
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac...The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.展开更多
AlN-SiC whisker composites with Y2O3 and SiO2 additives were heat-treated at 1300 ℃ in air. The phase composition and microstrurture were analyzed using XRD, SEM and HREM techniques to study the effect of heat-treatm...AlN-SiC whisker composites with Y2O3 and SiO2 additives were heat-treated at 1300 ℃ in air. The phase composition and microstrurture were analyzed using XRD, SEM and HREM techniques to study the effect of heat-treatment on the microstructure and properties of the composites. The results reveal that the mechanical properties and high temperature oxidation resistance of the composite of ivhich additives composition approaches the eutectic point of Y2O3-SiO2 can be improved through the heat-treatment. Glass phase in the grain boundary is observed to react with the surface composition of AlN forming fibrous 2Hδ Sialon, resulting a crossing structure produced by fibrous 2Hδ Sialon and SiC whiskers.展开更多
Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. ...Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. Dispersion of aqueous extracts of intact seed oil bodies (OBs) in water is a novel and interesting way of producing natural and oxidatively stable food emulsions with minimal use of synthetic antioxidants and emulsifiers. As there is growing interest in natural food emulsions containing unsaturated oils, we investigated whether the oxidative stability of canola OB emulsions could be further improved by subjecting canola seed to heat-treatment prior to oil body extraction. Oil-in-water (5%, w/w) emulsions of OBs extracted from canola seed before and after heat-treatment were considerably more resistant to oxidation than emulsions prepared from refined canola oil and Tween? 40 emulsifier. However, only small amounts (0.9% - 4.5% by weight) of the phenolic compounds present in canola seed were transferred to the OBs after aqueous extraction, and consequently there was no discernible effect on oxidative stability as a result of prior heat-treatment of the seed. Thus, in contrast to oil, there is no oxidative stability benefit to be gained by subjecting canola seed to heat-treatment prior to extraction of OBs.展开更多
The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O ...The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.展开更多
We demonstrated a scheme of bandwidth expansion and pulse shape optimized to afford 10 PW laser design via spec-tral shaping,which uses the existing Nd:glass amplifier chain of the SG PW laser.Compared to the amplifie...We demonstrated a scheme of bandwidth expansion and pulse shape optimized to afford 10 PW laser design via spec-tral shaping,which uses the existing Nd:glass amplifier chain of the SG PW laser.Compared to the amplified pulse with a gain-narrowing effect,the required parameters of injected pulse energy,spectral bandwidth,and shape are analyzed,to-gether with their influence on the system B-integral,energy output capability,and temporal intensity contrast.A bandwidth expansion to 7 nm by using LiNbO_(3) birefringent spectral shaping resulted in an output energy of 2 kJ in a proof-of-principle experiment.The results are consistent with the theoretical prediction which suggests that the amplifier chain of SG PW laser is capable of achieving 6 kJ at the bandwidth of 7 nm and the B-integral<π.This will support a 10 PW laser with a compressed pulse energy of 4.8 kJ(efficiency=80%)at 480 fs.展开更多
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th...The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.展开更多
With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/Si...The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.展开更多
Background The prospective association of dietary thiamine intake with the risk of cognitive decline among the general older adults remains uncertain.Aims To investigate the association between dietary thiamine intake...Background The prospective association of dietary thiamine intake with the risk of cognitive decline among the general older adults remains uncertain.Aims To investigate the association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals.Methods The study included a total of 3106 participants capable of completing repeated cognitive function tests.Dietary nutrient intake information was collected through 3-day dietary recalls and using a 3-day food-weighed method to assess cooking oil and condiment consumption.Cognitive decline was defined as the 5-year decline rate in global or composite cognitive scores based on a subset of items from the Telephone Interview for Cognitive Status-modified.Results The median follow-up duration was 5.9 years.There was a J-shaped relationship between dietary thiamine intake and the 5-year decline rate in global and composite cognitive scores,with an inflection point of 0.68 mg/day(95%confidence interval(Cl):0.56 to 0.80)and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.Before the inflection point,thiamine intake was not significantly associated with cognitive decline.Beyond the inflection point,each unit increase in thiamine intake(mg/day)was associated with a significant decrease of 4.24(95%Cl:2.22 to 6.27)points in the global score and 0.49(95%Cl:0.23 to 0.76)standard units in the composite score within 5 years.A stronger positive association between thiamine intake and cognitive decline was observed in those with hypertension,obesity and those who were non-smokers(all p<0.05).Conclusions This study revealed a J-shaped association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals,with an inflection point at 0.68 mg/day and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.展开更多
基金Projects(09JJ4027)supported by the Natural Science Foundation of Hunan Province,ChinaProject(201206375003)supported by China Scholarship Council
文摘Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after oxidation at 700 ℃ for 20 h, while that of sample B with air-fast-cooling one is only 0.98%. SEM images reveal that the coating of sample A is full of micro-holes, micro-cracks and many piece-like crystal particles, while that of sample B is integrated and compacted in glassy state with a few of micro-cracks. The coating of sample A is almost exhausted only in 8 h oxidized-test at 700 ℃, while that of sample B remains integrated after 8 h test at 700 ℃ and becomes loose due to much small pores generated after 20 h test at 700 ℃.
文摘The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.
基金Funded by the Basic Scientific Research of Central Colleges,Chang’an University (No. CHD2011JC126)
文摘The Fe-based amorphous coatings were produced by air plasma spraying. The as-sprayed coatings were heat-treated at the temperature of 573, 873, and 1 023 K, respectively. The crystallization and wear behavior of the heat-treated amorphous coatings were investigated. It was found that the amorphous- nanocrystalline transformation appeared when the as-sprayed coatings were treated at 853 K. The crystallization process had completed and a coating with microcrystallines was formed when the treatment temperature reached 1 023 K. The resultant amorphous and nanocrystalline composite coatings exhibited superior wear resistance compared to crystalline coating. It is attributed to fine grain strengthening of formed nanocrystallines.
基金This work was supported by Science-technology Support Foundation of Guizhou Province of China(Nos.[2019]2308,NY[2015]3027,[2020]1Y125 and[2019]2325)National Natural Science Foundation of China(No.31800481)Forestry Department Foundation of Guizhou Province of China(Nos.[2017]14,[2018]13).
文摘Pinus massoniana wood was modified by steam heat-treatment at 160℃,180℃,200℃ and 220℃ respectively and effects of the changes of density,pH,surface wettability and apparent morphology of Pinus massoniana heat-treated wood on its bonding performance were studied in this paper.The results showed that Pinus massoniana wood underwent a series of physical and chemical changes during heat-treatment as the the following:(1)The degradation of hemicellulose and cellulose with low degree of polymerization,degradation and migration of the extract resulting in the decline of density and pH of heat-treated Pinus massoniana wood.(2)Brittle fracture occured on the cell wall surface,and the pit collapse,shrink and deformation,resulting in the formation of roughness and porosity on the wood surface.(3)The surface energy decreased with the improvement of temperature,the surface wettability of Pinus massoniana wood treated at 160℃–180℃ was good,while that at 200℃–220℃ showed hydrophobicity.(4)Changes of density,pH,surface roughness and porosity,and wettability resulted in a reduction in the bonding strength and reliability of heat-treated Pinus massoniana wood with MUF resin adhesive.(5)When the temperature was at 160℃–180℃,the better wettability of heat-treated Pinus massoniana wood could guarantee the better bonding performance.
文摘Homogeneous HA coating materials were prepared on porous titanium by the low-temperature combustion synthesis. It was found that the mechanical properties of the specimen depend on the coating process and the heat treatment, and the bending strength would be reduced during the coating process but could be improved by heat treatment. The effects of the temperature during heat- treatment on the phase composition and microstructure of the as-prepared coating, and the bending strength of the specimen were investigated by XRD and SEM. The experimental results show that in the coating process, slight oxidation of the substrate may give rise to a drop in bending strength ; however, it could be increased by the reaction of HA and TiO2 , and the sintering of the coating during heat treatment. The HA particles in the coating, with very fine sized particles. were pretty active and would decompose at 800℃.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.32100257,32172078,31871599 and 31901528)Hunan Science and Technology Innovation Program,China(Grant Nos.2021NK1001,2021NK1003 and 2021NK1011)+1 种基金Key Research and Development,Projects in Hunan Province,China(Grant No.2020NK2054)the Open Programs of the State Key Laboratory of Hybrid Rice,Changsha,China(Grant No.2020KF03)。
文摘The main goals of rice breeding nowadays include increasing yield,improving grain quality,and promoting complete mechanized production to save labor costs.Rice grain shape,specified by three dimensions,including grain length,width and thickness,has a more precise meaning than grain size,contributing to grain appearance quality as well as grain weight and thus yield.Furthermore,the divergence of grain shape characters could be utilized in mechanical seed sorting in hybrid rice breeding systems,which has been succeeded in utilizing heterosis to achieve substantial increase in rice yield in the past decades.Several signaling pathways that regulate rice grain shape have been elucidated,including G protein signaling,ubiquitination-related pathway,mitogen-activated protein kinase signaling,phytohormone biosynthesis and signaling,micro RNA process,and some other transcriptional regulatory pathways and regulators.This review summarized the recent progress on molecular mechanisms underlying rice grain shape determination and the potential of major genes in future breeding applications.
文摘In the paper, the effect of heat-treatment on the strength and toughness of AIN-SiC whisker composites with Y2O3 + SiO2 additives have been studied. When the Sample confining 10wt% Y2O3+SiO2(.Y2O3/SiO2^l/0. 66) -was treated at 1330癈 in air for 140 hours ithe flexural strength of composites ivas raised from 481 MPa to 784 MPa the toughness ruas also enhanced slightly. The phase composi-tion infrastructure and grain boundary phase structure have been char-acterized by combining XDR, SEM, TEM/EDXA and HREM tech-niques, reinforcenent and toughening mechanism of the composites re-sults from the crystallization of glass phase in the grain boundary at the high temperature oxidizing atmosphere to form the crossing struc-ture of 2H?sialon fibrous phase and SiC whisker
文摘In order to obtain uniform exposure in variably shaped electron beam lithography,the beam current density and edge resolution on the target must not change for different spotshapes and sizes.The key to the goal is the appropriate design of shaping deflectors.A linearand rotation compensation approach is presented.Values of linear and rotation compensationfactors versus the distances between electron source image and centers of deflectors are measuredon an experimental electron beam column with variable spot shaping.The experimental resultsare in good agreement with the calculated ones.
基金financially supported by the National Natural Science Foundation of China(No.51974028)。
文摘The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.
文摘AlN-SiC whisker composites with Y2O3 and SiO2 additives were heat-treated at 1300 ℃ in air. The phase composition and microstrurture were analyzed using XRD, SEM and HREM techniques to study the effect of heat-treatment on the microstructure and properties of the composites. The results reveal that the mechanical properties and high temperature oxidation resistance of the composite of ivhich additives composition approaches the eutectic point of Y2O3-SiO2 can be improved through the heat-treatment. Glass phase in the grain boundary is observed to react with the surface composition of AlN forming fibrous 2Hδ Sialon, resulting a crossing structure produced by fibrous 2Hδ Sialon and SiC whiskers.
文摘Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. Dispersion of aqueous extracts of intact seed oil bodies (OBs) in water is a novel and interesting way of producing natural and oxidatively stable food emulsions with minimal use of synthetic antioxidants and emulsifiers. As there is growing interest in natural food emulsions containing unsaturated oils, we investigated whether the oxidative stability of canola OB emulsions could be further improved by subjecting canola seed to heat-treatment prior to oil body extraction. Oil-in-water (5%, w/w) emulsions of OBs extracted from canola seed before and after heat-treatment were considerably more resistant to oxidation than emulsions prepared from refined canola oil and Tween? 40 emulsifier. However, only small amounts (0.9% - 4.5% by weight) of the phenolic compounds present in canola seed were transferred to the OBs after aqueous extraction, and consequently there was no discernible effect on oxidative stability as a result of prior heat-treatment of the seed. Thus, in contrast to oil, there is no oxidative stability benefit to be gained by subjecting canola seed to heat-treatment prior to extraction of OBs.
基金supported by the National Natural Science Foundation of China (Nos.52074254 and 52174349)the CAS Project for Young Scientists in Basic Research,China (No.YSBR-025)+3 种基金the Shandong Provincial Science and Technology Innovation Project,China (No.2019JZZY010363)the Key Projects of International Cooperation,China (No.122111KYSB20200034)the Project of Key Laboratory of Science and Technology on Particle Materials,China (No.CXJJ-22S043)Chinese Academy of Sciences.This work was also financially supported by the Selection of Best Candidates to Undertake Key Research Projects,China (No.211110230200).
文摘The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.
基金Projectsupported by the International Partnership Program of Chinese Academy of Sciences(Grant No.181231KYSB20170022)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.20KJB140020).
文摘We demonstrated a scheme of bandwidth expansion and pulse shape optimized to afford 10 PW laser design via spec-tral shaping,which uses the existing Nd:glass amplifier chain of the SG PW laser.Compared to the amplified pulse with a gain-narrowing effect,the required parameters of injected pulse energy,spectral bandwidth,and shape are analyzed,to-gether with their influence on the system B-integral,energy output capability,and temporal intensity contrast.A bandwidth expansion to 7 nm by using LiNbO_(3) birefringent spectral shaping resulted in an output energy of 2 kJ in a proof-of-principle experiment.The results are consistent with the theoretical prediction which suggests that the amplifier chain of SG PW laser is capable of achieving 6 kJ at the bandwidth of 7 nm and the B-integral<π.This will support a 10 PW laser with a compressed pulse energy of 4.8 kJ(efficiency=80%)at 480 fs.
基金This work was supported by the National Key R&D Program‘Transportation Infrastructure’project(No.2022YFB2603400).
文摘The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
基金supported by the Fundamental Research Funds for the Central Universities(Grant Nos.D5000210522 and D5000210517)China Postdoctoral Science Foundation(Grant No.2021M702665)+2 种基金Natural Science Foundation of Shaanxi Province(Grant Nos.2022JQ-482 and 2023-JC-QN-0380)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515111155,2022A1515111200 and 2022A1515011191)Basic Research Programs of Taicang(Grant Nos.TC2021JC01,TC2021JC21,and TC2022JC08)。
文摘The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.
基金National Key Research and Development Program of China(2022YFC2009600,2022YFC2009605)National Natural Science Foundation of China(81973133)。
文摘Background The prospective association of dietary thiamine intake with the risk of cognitive decline among the general older adults remains uncertain.Aims To investigate the association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals.Methods The study included a total of 3106 participants capable of completing repeated cognitive function tests.Dietary nutrient intake information was collected through 3-day dietary recalls and using a 3-day food-weighed method to assess cooking oil and condiment consumption.Cognitive decline was defined as the 5-year decline rate in global or composite cognitive scores based on a subset of items from the Telephone Interview for Cognitive Status-modified.Results The median follow-up duration was 5.9 years.There was a J-shaped relationship between dietary thiamine intake and the 5-year decline rate in global and composite cognitive scores,with an inflection point of 0.68 mg/day(95%confidence interval(Cl):0.56 to 0.80)and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.Before the inflection point,thiamine intake was not significantly associated with cognitive decline.Beyond the inflection point,each unit increase in thiamine intake(mg/day)was associated with a significant decrease of 4.24(95%Cl:2.22 to 6.27)points in the global score and 0.49(95%Cl:0.23 to 0.76)standard units in the composite score within 5 years.A stronger positive association between thiamine intake and cognitive decline was observed in those with hypertension,obesity and those who were non-smokers(all p<0.05).Conclusions This study revealed a J-shaped association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals,with an inflection point at 0.68 mg/day and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.