Water-based architectural heat insulation coatings were studied to overcome the drawbacks of conventional inorganic silicate heat insulation coatings. The heat insulation coatings were prepared with the method of mech...Water-based architectural heat insulation coatings were studied to overcome the drawbacks of conventional inorganic silicate heat insulation coatings. The heat insulation coatings were prepared with the method of mechanical agitation when the mixed organic polymer emulsions were used as binder of the coatings and the mixed heat insulating aggregates were applied as powder, and some assistants were also added. Water temperature difference in the plastic container, which was coated with heat insulation coatings, represented the heat-insulating property of the coatings. The influences of components of mixed polymer emulsion, mass ratio of polymer emulsion to powder, particle size of heat insulating aggregates, added amount of air entraining admixture and the match of thickeners on the properties of the coatings were studied. The experimental results show that the heat insulation coatings with good finishing, heat-insulation property and artificial weathering can be prepared when the binder is composed of 66.92% styrene-acrylic emulsion, 16.59% elastic emulsion and 16.49% silicone-acrylic emulsion, the mass ratio of polymer emulsion to powder is 0.45, the particle size of heat insulating aggregates is in the rang of 200 and 250 mesh size, the added amount of sericite is 15%, and the added amount of air entraining admixture is in the range of 1.0% and 1.5% and the thickeners are the mixtures of ASE-60 and RM-5000.展开更多
The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the h...The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the heating process was rarely studied in the previous study. The tests about the influence of heating parameters, such as heating temperature, heating rates and dwell time, on properties of the Al-Si coating were carried out on the Gleeble-3500 thermal simulator. The properties of the Al-Si coating, for instance, volume fraction of FeAl intermetallics, α-Fe layer as well as porosity and 3D surface topography, were explored in the study. Results showed that more and more Kirkendall voids and cracks appeared in the Al-Si coating when the heating temperature exceeded 600°C. The heating rates almost had no influence on properties of the Al-Si coating when the temperature was equal to or lower than 500°C. The volume fraction of FeAl intermetallics in the coating with dwell time from 3 s to 8 min at 930°C was0, 6.19%, 17.03% and 20.65%, separately. The volume fraction of the α-Fe layer in the coating changed from zero to 31.52%with the prolonged dwell time. The porosity of the coating ranged from 0.51% to 4.98% with the extension of dwell time. The unsmooth degree of the surface of the coating rose gradually with the increasing of heating rates and the extension of dwell time.The 3D surface topography of the coating was determined by the comprehensive effect of atoms diffusion, new formed phases,surface tension and the degree of oxidation of the coating surface. Experiments indicated that rapid heating was not suitable for the coating when the temperature exceeded 500°C. Experiments also demonstrated that enough dwell time was essential to obtain the superior properties of the coating.展开更多
A nanostructured ternary coating of Ti/(Ru + Ti + Ce)O2 was prepared by the conventional electrodeposition on the titanium substrate as the cathode with different numbers of coating layers. The main objective of t...A nanostructured ternary coating of Ti/(Ru + Ti + Ce)O2 was prepared by the conventional electrodeposition on the titanium substrate as the cathode with different numbers of coating layers. The main objective of this work was to study nanostructured coatings of ceramic materials. For this purpose, the amount of precursor materials in the electrolyte was a variable parameter. Furthermore, the salt of TiCl4/RuCl3·xH2 O/Ce(NO3)3·6 H2 O with different amounts, hydrogen peroxide, methanol, and distilled water were used as an aqueousunaqueous bath. In addition, the coated samples were put to heat at 300, 450, 650, and 850℃ in an electric furnace for1 h. The crystalline phase of the coating was characterized by X-ray diffraction(XRD). The chemical composition and microstructure of the coating were studied using energydispersive spectroscopy(EDS) and scanning electron microscopy analysis(SEM). Moreover, the electrochemical measurement of Ti/(Ru + Ti + Ce)O2 coatings was carried out. Results show that with the increase in the number of coating layers, the quality of morphology is improved.Then, the best quality of coatings is obtained at six layers on the titanium substrate with electrolyte including TiO2/RuO2/CeO2 with the molar ratio of 70:5:25 after heat treatment at 450 ℃ for 1 h. Besides,with the increase in Ce02 content from 5 wt% to 25 wt% and the number of coating layers, higher thickness of about(20.0±0.1) μm and minimum over potential for chlorine evolution were obtained.展开更多
A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is perf...A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison.The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant,and spatial difference is also discussed.Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest.The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path.Thermal barrier effects of the coating vary at different regions of the blade surface,where higher internal cooling performance exists,more effective the thermal barrier will be,which means the thermal protection effect of coatings is remarkable in these regions.At the designed mass flow ratio condition,the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface,while this value is 0.09 on the suction side.展开更多
FeCoCrNiAl high entropy alloy coatings were prepared by supersonic air-plasma spraying.The coatings were post-treated by vacuum heat treatment at 600 and 900°C,and laser re-melting with 300 W,respectively,to stud...FeCoCrNiAl high entropy alloy coatings were prepared by supersonic air-plasma spraying.The coatings were post-treated by vacuum heat treatment at 600 and 900°C,and laser re-melting with 300 W,respectively,to study the influence of different treatments on the structure and properties of the coatings.The phase constitution,microstructure and microhardness of the coatings after treatments were investigated using X-ray diffraction,scanning electron microscopy and energy dispersive spectrometry.Results showed that the as-sprayed coatings consisted of pure metal and Fe-Cr.The AlNi;phase was obtained after the vacuum heat treatment process.A body-centered cubic structure with less AlNi;could be found in the coating after the laser re-melting process.The average hardness values of the as-sprayed coating and the coatings with two different temperature vacuum heat treatments and with laser re-melting were 177,227,266 and 682 HV,respectively.This suggests that the vacuum heat treatment promoted the alloying process of the coatings,and contributed to the enhancement of the coating wear resistance.The laser re-melted coating showed the best wear resistance.展开更多
Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Partic...Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.展开更多
The introduction of fresh air into the indoor space leads to a significant increase in cooling or heating loads.Solid desiccant heat pump fresh air unit which can handle the latent and sensible load of fresh air effic...The introduction of fresh air into the indoor space leads to a significant increase in cooling or heating loads.Solid desiccant heat pump fresh air unit which can handle the latent and sensible load of fresh air efficiently have been proposed recently.To improve the performance of the solid desiccant heat pump fresh air unit in the fresh air handling process,in this paper,the application of composite silica gel in a heat pump fresh air unit was investigated.The comparison between silica gel coating(SGC)and composite silica gel coating(CSGC)shows that the adsorption rate and water uptake capacity of CSGC are more than two times higher than those of SGC.An experimental setup for the solid desiccant heat pump fresh air unit was established.The performance of SGC and CSGC was tested in the setup successively.Results show that under summer conditions,compared with the solid desiccant heat pump fresh air unit using silica gel(SGFU),the average moisture removal and COP of the one using composite silica gel(CSGFU)increased by 15%and 30%,respectively.Under winter conditions,compared with SGFU,the average humidification and COP of CSGFU increased by 42%and 17%.With optimal operation conditions of 3 min switchover time and 40 r/s compressor frequency,the COP of CSGFU under summer conditions can reach 7.6.Results also show that the CSGFU and SGFU have higher COP and dehumidification rate under higher outdoor temperature and humidity ratio.展开更多
基金Funded by the Scientific Research Foundation for Postdoctor(20061023)
文摘Water-based architectural heat insulation coatings were studied to overcome the drawbacks of conventional inorganic silicate heat insulation coatings. The heat insulation coatings were prepared with the method of mechanical agitation when the mixed organic polymer emulsions were used as binder of the coatings and the mixed heat insulating aggregates were applied as powder, and some assistants were also added. Water temperature difference in the plastic container, which was coated with heat insulation coatings, represented the heat-insulating property of the coatings. The influences of components of mixed polymer emulsion, mass ratio of polymer emulsion to powder, particle size of heat insulating aggregates, added amount of air entraining admixture and the match of thickeners on the properties of the coatings were studied. The experimental results show that the heat insulation coatings with good finishing, heat-insulation property and artificial weathering can be prepared when the binder is composed of 66.92% styrene-acrylic emulsion, 16.59% elastic emulsion and 16.49% silicone-acrylic emulsion, the mass ratio of polymer emulsion to powder is 0.45, the particle size of heat insulating aggregates is in the rang of 200 and 250 mesh size, the added amount of sericite is 15%, and the added amount of air entraining admixture is in the range of 1.0% and 1.5% and the thickeners are the mixtures of ASE-60 and RM-5000.
基金supported by the National Natural Science Foundation of China(Grant Nos.51275185,51405171,U1564203)
文摘The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the heating process was rarely studied in the previous study. The tests about the influence of heating parameters, such as heating temperature, heating rates and dwell time, on properties of the Al-Si coating were carried out on the Gleeble-3500 thermal simulator. The properties of the Al-Si coating, for instance, volume fraction of FeAl intermetallics, α-Fe layer as well as porosity and 3D surface topography, were explored in the study. Results showed that more and more Kirkendall voids and cracks appeared in the Al-Si coating when the heating temperature exceeded 600°C. The heating rates almost had no influence on properties of the Al-Si coating when the temperature was equal to or lower than 500°C. The volume fraction of FeAl intermetallics in the coating with dwell time from 3 s to 8 min at 930°C was0, 6.19%, 17.03% and 20.65%, separately. The volume fraction of the α-Fe layer in the coating changed from zero to 31.52%with the prolonged dwell time. The porosity of the coating ranged from 0.51% to 4.98% with the extension of dwell time. The unsmooth degree of the surface of the coating rose gradually with the increasing of heating rates and the extension of dwell time.The 3D surface topography of the coating was determined by the comprehensive effect of atoms diffusion, new formed phases,surface tension and the degree of oxidation of the coating surface. Experiments indicated that rapid heating was not suitable for the coating when the temperature exceeded 500°C. Experiments also demonstrated that enough dwell time was essential to obtain the superior properties of the coating.
基金financially supported by the Semnan University Foundation of Iran
文摘A nanostructured ternary coating of Ti/(Ru + Ti + Ce)O2 was prepared by the conventional electrodeposition on the titanium substrate as the cathode with different numbers of coating layers. The main objective of this work was to study nanostructured coatings of ceramic materials. For this purpose, the amount of precursor materials in the electrolyte was a variable parameter. Furthermore, the salt of TiCl4/RuCl3·xH2 O/Ce(NO3)3·6 H2 O with different amounts, hydrogen peroxide, methanol, and distilled water were used as an aqueousunaqueous bath. In addition, the coated samples were put to heat at 300, 450, 650, and 850℃ in an electric furnace for1 h. The crystalline phase of the coating was characterized by X-ray diffraction(XRD). The chemical composition and microstructure of the coating were studied using energydispersive spectroscopy(EDS) and scanning electron microscopy analysis(SEM). Moreover, the electrochemical measurement of Ti/(Ru + Ti + Ce)O2 coatings was carried out. Results show that with the increase in the number of coating layers, the quality of morphology is improved.Then, the best quality of coatings is obtained at six layers on the titanium substrate with electrolyte including TiO2/RuO2/CeO2 with the molar ratio of 70:5:25 after heat treatment at 450 ℃ for 1 h. Besides,with the increase in Ce02 content from 5 wt% to 25 wt% and the number of coating layers, higher thickness of about(20.0±0.1) μm and minimum over potential for chlorine evolution were obtained.
基金funded by the National Natural Science Foundation of China(Funding No.51206109)
文摘A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera.Besides,conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison.The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant,and spatial difference is also discussed.Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest.The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path.Thermal barrier effects of the coating vary at different regions of the blade surface,where higher internal cooling performance exists,more effective the thermal barrier will be,which means the thermal protection effect of coatings is remarkable in these regions.At the designed mass flow ratio condition,the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface,while this value is 0.09 on the suction side.
基金financially supported by National Natural Science Foundation of China (Nos.51301112 and 51401129)China Postdoctoral Science Foundation (2015M571327)+1 种基金the Natural Science Foundation of Liaoning Province(No.201602553)the Science Research Program of Education Department in Liaoning Province(No.L2014048)
文摘FeCoCrNiAl high entropy alloy coatings were prepared by supersonic air-plasma spraying.The coatings were post-treated by vacuum heat treatment at 600 and 900°C,and laser re-melting with 300 W,respectively,to study the influence of different treatments on the structure and properties of the coatings.The phase constitution,microstructure and microhardness of the coatings after treatments were investigated using X-ray diffraction,scanning electron microscopy and energy dispersive spectrometry.Results showed that the as-sprayed coatings consisted of pure metal and Fe-Cr.The AlNi;phase was obtained after the vacuum heat treatment process.A body-centered cubic structure with less AlNi;could be found in the coating after the laser re-melting process.The average hardness values of the as-sprayed coating and the coatings with two different temperature vacuum heat treatments and with laser re-melting were 177,227,266 and 682 HV,respectively.This suggests that the vacuum heat treatment promoted the alloying process of the coatings,and contributed to the enhancement of the coating wear resistance.The laser re-melted coating showed the best wear resistance.
基金supported by the National Natural Science Foundation of China under Grant Nos.51271191,51571205 and 51401209
文摘Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.
基金the financial support from the National Natural Science Foundation of China(No.51922070)supported by"the Fundamental Research Funds for the Central Universities"。
文摘The introduction of fresh air into the indoor space leads to a significant increase in cooling or heating loads.Solid desiccant heat pump fresh air unit which can handle the latent and sensible load of fresh air efficiently have been proposed recently.To improve the performance of the solid desiccant heat pump fresh air unit in the fresh air handling process,in this paper,the application of composite silica gel in a heat pump fresh air unit was investigated.The comparison between silica gel coating(SGC)and composite silica gel coating(CSGC)shows that the adsorption rate and water uptake capacity of CSGC are more than two times higher than those of SGC.An experimental setup for the solid desiccant heat pump fresh air unit was established.The performance of SGC and CSGC was tested in the setup successively.Results show that under summer conditions,compared with the solid desiccant heat pump fresh air unit using silica gel(SGFU),the average moisture removal and COP of the one using composite silica gel(CSGFU)increased by 15%and 30%,respectively.Under winter conditions,compared with SGFU,the average humidification and COP of CSGFU increased by 42%and 17%.With optimal operation conditions of 3 min switchover time and 40 r/s compressor frequency,the COP of CSGFU under summer conditions can reach 7.6.Results also show that the CSGFU and SGFU have higher COP and dehumidification rate under higher outdoor temperature and humidity ratio.