Nanofluids have attracted many scientists due to their remarkable thermophysical properties.Small percentage of nanoparticles when added to conventional fluid significantly enhances the heat transfer features.Sustaina...Nanofluids have attracted many scientists due to their remarkable thermophysical properties.Small percentage of nanoparticles when added to conventional fluid significantly enhances the heat transfer features.Sustainability and efficiency of nanomaterials have key role in the advancement of nanotechnology.This article analyzes the Hall,Ohmic heating and velocity slip effects on the peristalsis of nanofluid.Convective boundary conditions and heat generation/absorption are considered to facilitate the heat transfer characteristics.Governing equations for the peristaltic flow through a curved channel are derived in curvilinear coordinates.The equations are numerically solved under the assumption of long wavelength and small Reynold number.It has been observed that nanofluid enhances the heat transfer rate and reduces the fluid temperature.Hartman number and Hall parameter show reverse behavior in fluid motion and heat transfer characteristics.In the presence of velocity slip,the pressure gradient rapidly decreases and dominant effect is seen in narrow portion of channel.展开更多
Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27....Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27.12 MHz and power of 60-150 W were investigated.When the power of RCF is lower than 90 W,temperatures of Fe3O4 magnetic nanoparticles(75-150 mg/mL) can be raised and maximal temperatures are all lower than 50 ℃.When the power of RCF is 90-150 W,temperatures of Fe3O4 magnetic nanoparticles can be quickly raised and are all obviously higher than those of normal saline and distilled water under the same conditions.Temperature of Fe3O4 magnetic nanoparticles can even reach 70.2 ℃ under 150 W RCF.Heating effects of Fe3O4 magnetic nanoparticles are related to RCF power,particle size and particle concentration.展开更多
This paper presents a numerical analysis of Joule heating effect of electroosmo- sis in a finite-length microchannel made of the glass and polydimethylsiloxane (PDMS) polymer. The Poisson-Boltzmann equation of elect...This paper presents a numerical analysis of Joule heating effect of electroosmo- sis in a finite-length microchannel made of the glass and polydimethylsiloxane (PDMS) polymer. The Poisson-Boltzmann equation of electric double layer, the Navier-Stokes equation of liquid flow, and the liquid-solid coupled heat transfer equation are solved to investigate temperature behaviors of electroosmosis in a two-dimensional microchannel. The feedback effect of temperature variation on liquid properties (dielectric constant, vis- cosity, and thermal and electric conductivities) is taken into account. Numerical results indicate that there exists a heat developing length near the channel inlet where the flow velocity, temperature, pressure, and electric field rapidly vary and then approach to a steady state after the heat developing length, which may occupy a considerable portion of the microchannel in cases of thick chip and high electric field. The liquid temperature of steady state increases with the increase of the applied electric field, channel width, and chip thickness. The temperature on a PDMS wall is higher than that on a glass wall due to the difference of heat conductivities of materials. Temperature variations are found in the both longitudinal and transverse directions of the microchannel. The increase of the temperature on the wall decreases the charge density of the electric double layer. The longitudinal temperature variation induces a pressure gradient and changes the behavior of the electric field in the microchannel. The inflow liquid temperature does not change the liquid temperature of steady state and the heat developing length.展开更多
A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and to...A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated.展开更多
Metal nanoparticle@porous material composites have attracted increasing attention due to their excellent synergistic catalytic performance.However,it is a challenge to introduce metal nanoparticles into cavities of po...Metal nanoparticle@porous material composites have attracted increasing attention due to their excellent synergistic catalytic performance.However,it is a challenge to introduce metal nanoparticles into cavities of porous materials without agglomeration on the exterior.Despite the progress achieved,a universal approach that can integrate different kinds of metal nanoparticles and porous materials is still highly desirable.Here we report a facile and general approach to fabricating metal nanoparticle@porous materials by microwave-triggered selective heating.The microwave can pass through the non-polar solvent and act on the polar solvent in the porous materials,causing the polar solvent to be heated,vaporized,and away from the pores of porous materials.The local void produced by the escape of polar solvent facilitates non-polar solvent containing metallic precursor to be dragged into the narrow pores,followed by further reduction,resulting in the complete encapsulation of nanoparticles.A series of metal nanoparticles@porous materials,ranging from metal-organic frameworks(MOFs)to zeolites,are successfully prepared by this method and show excellent size selectivity in catalytic reactions.展开更多
An abnormal fluorescence intensity ratio (FIR) between two green emissions of Er3+, at room temperature, which is larger than a normal value, emerged in many reported articles. However, up to now detailed work has ...An abnormal fluorescence intensity ratio (FIR) between two green emissions of Er3+, at room temperature, which is larger than a normal value, emerged in many reported articles. However, up to now detailed work has seldom been done to clarify this abnormal phenomenon. In this paper, green upconversion luminescence of the β-NaLuF4:20%yb3+,2%Er3+ powder sample was investigated under 980 um excitation at different circumstances, different pump power densities and different temperatures as well as different air pressures. The corresponding local temperature calculated using FIR technique increased gradually with the enhancement of the pump power density. It was demonstrated that high pump power density of 980 nm laser led to the increase of local temperature of the luminescent material, which further gave the abnormal FIR.展开更多
In this paper,an experiment system of wind-energy stirring heater has been designed and built.Its heating performance under the rotation speed of 300 r/min has been studied through changing stirring rotor’s layer num...In this paper,an experiment system of wind-energy stirring heater has been designed and built.Its heating performance under the rotation speed of 300 r/min has been studied through changing stirring rotor’s layer number or using different working fluids.With the help of CFD numerical simulation method,we studied the influence factors including temperature rise,total heat,heating power of each experimental group,and analyzed why these factors have such an effect.The results show:increasing the layer number of the stirring rotors can increase the motion intensity of working fluid and improve the heating effect;the quantity of effective working fluid in the rotor area can be increased significantly with the increasing of liquid level;the working liquid with high density,low viscosity,low specific heat capacity will be the ideal one.展开更多
A zonal domain primitive equation modeling system(ZDMS)is used to study the effects of the initial heating anomalies over the Tibetan Plateau and the western Pacific on the East Asian and the Chinese summer climate,th...A zonal domain primitive equation modeling system(ZDMS)is used to study the effects of the initial heating anomalies over the Tibetan Plateau and the western Pacific on the East Asian and the Chinese summer climate,the relative importance and the mechanisms are discussed.Results show that in spite of the different locations of the heating anomalies the influences of the two anomaly areas are much similar to each other when the scaling of the two areas is the same.The two areas of heating anomalies have their own affecting domains in which one is more important than the oth- er.In the western Pacific the heating anomaly over the western Pacific is more evident and in the Tibetan Plateau area the heating anomaly over the Tibetan Plateau is more obvious.For the east part of China the effects of the two heating anomalies both exist and almost have the equal impor- tance.The initial anomaly of the sea surface temperature(SST)over the western Pacific can be kept during the entire time integration while in the Tibetan Plateau it can not be maintained.展开更多
Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortice...Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortices and DEP,our group proposed a device using a direct current(DC)electric field to achieve continuous particle separation.In this paper,the influence of the Joule heating effect on the continuous separation of particles is analyzed.Results show that the Joule heating effect is caused by the local electric field,and the Joule heating effect caused by adjusting the modulating voltage is more significant than that by driving voltage.Moreover,a non-uniform temperature distribution exists in the channel due to the Joule heating effect,and the temperature is the highest at the midpoint of the modulating electrodes.The channel flux can be enhanced,and the enhancement of both the channel flux and temperature is more obvious for a stronger Joule heating effect.In addition,the ability of the vortices to trap particles is enhanced since a larger DEP force is exerted on the particles with the Joule heating effect;and the ability of the vortex to capture particles is stronger with a stronger Joule heating effect.The separation efficiency can also be increased because perfect separation is achieved at a higher channel flux.Parameter optimization of the separation device,such as the convective heat transfer coefficient of the channel wall,the length of modulating electrode,and the width of the channel,is performed.展开更多
The application of laser pulses with psec or shorter duration enables nonthermal efficient ultrahigh acceleration of plasma blocks with homogeneous high ion energies exceeding ion current densities of 10^(12) A cm^(-2...The application of laser pulses with psec or shorter duration enables nonthermal efficient ultrahigh acceleration of plasma blocks with homogeneous high ion energies exceeding ion current densities of 10^(12) A cm^(-2). The effects of ultrahigh acceleration of plasma blocks with high energy proton beams are proposed for muon production in a compact magnetic fusion device. The proposed new scheme consists of an ignition fusion spark by muon catalyzed fusion(μCF) in a small mirror-like configuration where low temperature D–T plasma is trapped for a duration of 1 μs. This initial fusion spark produces sufficient alpha heating in order to initiate the fusion process in the main device. The use of a multi-fluid global particle and energy balance code allows us to follow the temporal evolution of the reaction rate of the fusion process in the device. Recent progress on the ICAN and IZEST projects for high efficient high power and high repetition rate laser systems allows development of the proposed device for clean energy production. With the proposed approaches,experiments on fusion nuclear reactions and μCF process can be performed in magnetized plasmas in existing kJ/PW laser facilities as the GEKKO-LFEX, the PETAL and the ORION or in the near future laser facilities as the ELI-NP Romanian pillar.展开更多
In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest a...In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage.展开更多
The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree ...The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree of damage is different, were selected from Tongchun, Qilin, and Pingdingshan mines. Using a series of experiments in an electrostatic field, we analyzed the characteristics of gas adsorption and diffusion in tectonic coal. We found that gas adsorption in coal conforms to the Langmuir equation in an electrostatic field. Both the depth of the adsorption potential well and the coal molecular electroneg- ativity increases under the action of an electrostatic field. A Joule heating effect was caused by changing the coal-gas system conductivity in an electrostatic field. The quantity of gas adsorbed and AP result from competition between the depth of the adsorption potential well, the coal molecular electronegativ- ity, and the Joule heating effect. △P peaks when the three factors control behavior equally. Compared with anthracite, the impact of the electrostatic field on the gas diffusion capacity of middle and high rank coals is greater. Compared with the original coal, the gas adsorption quantity,△P, and the gas diffusion capacity of tectonic coal are greater in an electrostatic field. In addition, the smaller the particle size of tectonic coal, the larger the△P.展开更多
[Objective] The aim was to analyse the variation characteristics of temperature in Anqing City and urban heat island effect.[Method] Based on the observation data of temperature from Anqing Station,other surrounding m...[Objective] The aim was to analyse the variation characteristics of temperature in Anqing City and urban heat island effect.[Method] Based on the observation data of temperature from Anqing Station,other surrounding meteorological stations and local automatic meteorological stations in suburbs,the annual variation of temperature and regional consistency was analysed,then the abrupt change of annual average temperature was tested by Mann-Kendall test,finally the influences of urban heat island effect on temperature variation in Anqing Station were studied.[Result] Affected by station migration and urban construction,the annual average temperature increased significantly in Anqing Station from 1977 to 2009,and the rising was more prominent after the middle of the 1990s.Mann-Kendall test showed that the change of temperature in Anqing Station was obviously abrupt around 1993;because of the development of urbanization,average temperature in Anqing Station was 0.8 ℃ higher than that in suburbs,and the minimum temperature rose more remarkably.In addition,urban heat island effect was the strongest in spring,followed by summer and autumn,while it was the weakest in winter.[Conclusion] The effects of urbanization development on the temperature in Anqing City were understood through this research.展开更多
Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas,known as urban heat island effect.Ther...Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas,known as urban heat island effect.Thermal remote sensors measure the radiation emitted by ground objects,which can be used to estimate the land surface temperature and are beneficial for studying urban heat island effects.The present study investigates the spatial and temporal variations in the effects of urban heat island over Tiruchirappalli city in India during the summer and winter seasons.The study also identifies hot spots and cold spots within the study area.In this study,a significant land surface temperature difference was observed between the urban and rural areas,predominantly at night,indicating the presence of urban heat island at night.These diurnal land surface temperature fluctuations are also detected seasonally,with a relatively higher temperature intensity during the summer.The trend line analysis shows that the mean land surface temperature of the study area is increasing at a rate of 0.166 K/decade with p less than 0.01.By using the spatial autocorrelation method with the urban heat island index as the key parameter,hot spots with a 99 percent confidence level and a 95 percent confidence level were found within the urban area.A hot spot with 95 and 90 percent confidence level was identified outside the urban area.This spike in temperature for a particular region in the rural area is due to industry and the associated built-up area.The study also identified cold spots with a 90 percent confidence level within the rural area.However,cold spots with a 95 and 99 percent confidence level were not identified within the study area.展开更多
The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich...The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich wetlands in China,was selected as a case study for researching the changes that the urban wetlands have undergone and their impact on the urban thermal environment.Land surface temperature(LST) was acquired from the thermal infrared data of Landsat 5 Thematic Mapper(TM) images in 1990,1995,2000,2006,and 2010,using the single-channel method.The results are as follows:1) considering the changes in land use,the urban wetlands located to the west of Hangzhou have decreased significantly during 1990–2010 because of rapid urbanization.In the Xixi Wetland,the change in land use was relatively small and most of the water body and vegetation were preserved.However,to the east of the Xixi Wetland,large areas of water body and vegetation have been replaced by built-up land as a result of the urbanization process;2) considering the change in LST,it was found from land surface temperature retrieval that the changing spatial pattern of the thermal field was highly correlated with land use changes.Low temperature regions of the eastern Xixi Wetland were gradually eroded by high temperature regions,and the centroid of the heat island in East Xixi was found to be constantly shifting westward.In addition,the difference in LST between the Xixi Wetland and East Xixi has increased;3) considering the impact factors for this area,land use structure and patch shape were found to have a significant impact on LST,shown by the results of multiple linear stepwise regressions.Increasing the size of the wetlands in urban planning is considered to be the most effective measure in alleviating the urban heat island effect.Moreover,reducing the spatial complexity of landscape patches also contributes to the alleviation of the urban heat island effect.展开更多
To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review pape...To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.展开更多
This paper analyzes the Urban Heat Island (UHI) effect in Lhasa City of Tibet using meteorological observations, the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST) data obtained fr...This paper analyzes the Urban Heat Island (UHI) effect in Lhasa City of Tibet using meteorological observations, the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST) data obtained from Earth Observing System/Moderate resolution Imaging Spectroradiometer (EOS/MODIS) information, and correlation and composite analyses. The results show: (1) Areas with high temperature are primarily located in the center of the city or nearby counties, while low temperature areas are in the suburbs of counties. The area with high temperature has expanded in recent years and some high-temperature centers have even migrated to certain other regions. (2) The UHI intensity tends to be stronger both in annual and seasonal variations, especially in winter. Also, LST is somewhat positively related to mean air temperature. (3) A negative correlation exists between the changes of LST and NDVI with the increase of vegetation from urban to rural areas in different seasons. (4) The UHI intensity is negatively correlated with precipitation while positively correlated with wind speed, and the relation between the UHI intensity and evaporation varies with the seasons, namely, the intensity is positively correlated with summer evaporation but negatively corre- lated with winter evaporation. (5) UHI intensity might be enhanced by intensified urbanization, wherein built-up areas expand, there is increased heat from human activity, and there is more artificial heat input to the atmosphere.展开更多
With the advancement of urbanization,the urban heat island effect and ozone pollution have become hot issues in urban research.The urban heat island effect can impact ozone conversion,but its mechanism of action is un...With the advancement of urbanization,the urban heat island effect and ozone pollution have become hot issues in urban research.The urban heat island effect can impact ozone conversion,but its mechanism of action is unclear.In this study,the effects of the urban heat island effect on ozone concentration in Chengdu City,China,were investigated by comparing the ozone concentration under different heat island levels with ozone data from March 2020 to February 2021 and the temperature and wind field data of ERA5-Land during the same period.The results showed that:1)regarding the distribution characteristics,the ozone concentration in Chengdu presented a‘high in summer and low in winter’distribution.The ozone concentration in summer(189.54µg/m^(3))was nearly twice that in winter(91.99µg/m^(3)),and the ozone diurnal variation presented a‘single peak and single valley’distribution,with a peak at 16:00.2)For the characteristics of the heat island effect,the heat island intensity in Chengdu was obviously higher in spring than in other seasons,and the diurnal variation showed a‘single peak and single valley’distribution,with the peak and trough values appearing at 9:00 and 17:00,respectively.Spatially,the eastern part of Chengdu was a heat island,while the western and northwestern parts were mostly cold island.3)The correlation analysis between heat island intensity and ozone concentration showed a significant positive correlation but with a 7–8 h time lag.Ambient air temperature was not the main factor affecting ozone concentration.The heat island effect impacts the ozone concentration in two ways:changing the local heat budget to promote ozone generation and forming local urban wind,which promotes ozone diffusion or accumulation and forms different areas of low and high ozone values.展开更多
Seeds of Dodonaea viscosa (L.) Jacq, a representative species in dry and hot valleys in Southwest China, were chosen as experimental materials. In this experiment, the D. viscosa seeds were treated at 40, 60, 80 and...Seeds of Dodonaea viscosa (L.) Jacq, a representative species in dry and hot valleys in Southwest China, were chosen as experimental materials. In this experiment, the D. viscosa seeds were treated at 40, 60, 80 and 100℃ respectively before germination to study impacts of high temperature treatment on their generation rate and to further discuss the roles of fire during the process of vegetation formation in dry and hot valley areas of China. The results show that when the temperature was higher than 40 ℃, the germination rate of D. viscosa seeds was significantly higher than that of the control group, and the heat shock effect was apparent. The germination rate was the highest when the seeds were treated at 80 ℃ for 10 min, reaching 63.00%±2.55%. There was still a significant heat shock effect on the D. viscosa seeds which were stored for one year. In comparison with the conventional method of soaking seeds in hot water, the germination rate of D. viscose seeds which were treated at high temperature before germination increased significantly.展开更多
The therapeutic actions of Qing Luo Yin (QLY清络饮) with heat property and Wen Luo Yin (WLY温络饮) with cold property on pain, swelling of the ankle, arthritis index and ultrastructures of synoviocytes were compared i...The therapeutic actions of Qing Luo Yin (QLY清络饮) with heat property and Wen Luo Yin (WLY温络饮) with cold property on pain, swelling of the ankle, arthritis index and ultrastructures of synoviocytes were compared in rats of type II collagen-induced arthritis (CIA), with tripterygium glycosidorum (TG) used as control. The results indicated that both QLY and WLY could reduce pain, swelling of the ankle and the arthritis index of CIA, and QLY had better effects in reducing the swelling of the ankle and controlling the secondary pathological lesions as compared with WLY. Investigation on the ultrastructures of synoviocytes indicated that both QLY and WLY could reduce the number of Golgi apparatus, rough surface endoplasmic reticulum, dense bodies, matrix filaments and vacuoles so as to suppress the excessive secretion of synoviocytes in rats of CIA.展开更多
文摘Nanofluids have attracted many scientists due to their remarkable thermophysical properties.Small percentage of nanoparticles when added to conventional fluid significantly enhances the heat transfer features.Sustainability and efficiency of nanomaterials have key role in the advancement of nanotechnology.This article analyzes the Hall,Ohmic heating and velocity slip effects on the peristalsis of nanofluid.Convective boundary conditions and heat generation/absorption are considered to facilitate the heat transfer characteristics.Governing equations for the peristaltic flow through a curved channel are derived in curvilinear coordinates.The equations are numerically solved under the assumption of long wavelength and small Reynold number.It has been observed that nanofluid enhances the heat transfer rate and reduces the fluid temperature.Hartman number and Hall parameter show reverse behavior in fluid motion and heat transfer characteristics.In the presence of velocity slip,the pressure gradient rapidly decreases and dominant effect is seen in narrow portion of channel.
基金Projects(30571779,10775085) supported by the National Natural Science Foundation of ChinaProject(Z07000200540704) supported by Beijing Municipal Science and Technology Commission,China
文摘Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27.12 MHz and power of 60-150 W were investigated.When the power of RCF is lower than 90 W,temperatures of Fe3O4 magnetic nanoparticles(75-150 mg/mL) can be raised and maximal temperatures are all lower than 50 ℃.When the power of RCF is 90-150 W,temperatures of Fe3O4 magnetic nanoparticles can be quickly raised and are all obviously higher than those of normal saline and distilled water under the same conditions.Temperature of Fe3O4 magnetic nanoparticles can even reach 70.2 ℃ under 150 W RCF.Heating effects of Fe3O4 magnetic nanoparticles are related to RCF power,particle size and particle concentration.
基金supported by the National Natural Science Foundation of China (Nos.10872076 and 50805059)
文摘This paper presents a numerical analysis of Joule heating effect of electroosmo- sis in a finite-length microchannel made of the glass and polydimethylsiloxane (PDMS) polymer. The Poisson-Boltzmann equation of electric double layer, the Navier-Stokes equation of liquid flow, and the liquid-solid coupled heat transfer equation are solved to investigate temperature behaviors of electroosmosis in a two-dimensional microchannel. The feedback effect of temperature variation on liquid properties (dielectric constant, vis- cosity, and thermal and electric conductivities) is taken into account. Numerical results indicate that there exists a heat developing length near the channel inlet where the flow velocity, temperature, pressure, and electric field rapidly vary and then approach to a steady state after the heat developing length, which may occupy a considerable portion of the microchannel in cases of thick chip and high electric field. The liquid temperature of steady state increases with the increase of the applied electric field, channel width, and chip thickness. The temperature on a PDMS wall is higher than that on a glass wall due to the difference of heat conductivities of materials. Temperature variations are found in the both longitudinal and transverse directions of the microchannel. The increase of the temperature on the wall decreases the charge density of the electric double layer. The longitudinal temperature variation induces a pressure gradient and changes the behavior of the electric field in the microchannel. The inflow liquid temperature does not change the liquid temperature of steady state and the heat developing length.
基金Project supported by Hi-Tech Research and Development Program of China (Grant Nos. 2007AA05Z436 and 2009AA050602)Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500)+3 种基金National Basic Research Program of China(Grant Nos. 2006CB202602 and 2006CB202603)National Natural Science Foundation of China (Grant No. 60976051)International Cooperation Project between China-Greece Government (Grant Nos. 2006DFA62390 and 2009DFA62580)Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0295)
文摘A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated.
基金supported by the National Natural Science Foundation of China(Nos.21908105,21971114 and 62288102)the Nanjing Municipal Science and Technology Innovation Project.
文摘Metal nanoparticle@porous material composites have attracted increasing attention due to their excellent synergistic catalytic performance.However,it is a challenge to introduce metal nanoparticles into cavities of porous materials without agglomeration on the exterior.Despite the progress achieved,a universal approach that can integrate different kinds of metal nanoparticles and porous materials is still highly desirable.Here we report a facile and general approach to fabricating metal nanoparticle@porous materials by microwave-triggered selective heating.The microwave can pass through the non-polar solvent and act on the polar solvent in the porous materials,causing the polar solvent to be heated,vaporized,and away from the pores of porous materials.The local void produced by the escape of polar solvent facilitates non-polar solvent containing metallic precursor to be dragged into the narrow pores,followed by further reduction,resulting in the complete encapsulation of nanoparticles.A series of metal nanoparticles@porous materials,ranging from metal-organic frameworks(MOFs)to zeolites,are successfully prepared by this method and show excellent size selectivity in catalytic reactions.
基金Project supported by the National Natural Science Foundation of China(11374291,11274299 and 11204292)
文摘An abnormal fluorescence intensity ratio (FIR) between two green emissions of Er3+, at room temperature, which is larger than a normal value, emerged in many reported articles. However, up to now detailed work has seldom been done to clarify this abnormal phenomenon. In this paper, green upconversion luminescence of the β-NaLuF4:20%yb3+,2%Er3+ powder sample was investigated under 980 um excitation at different circumstances, different pump power densities and different temperatures as well as different air pressures. The corresponding local temperature calculated using FIR technique increased gradually with the enhancement of the pump power density. It was demonstrated that high pump power density of 980 nm laser led to the increase of local temperature of the luminescent material, which further gave the abnormal FIR.
基金supported by the National Vegetable Industry System(No.CARS-23-C05)the Yangling Demonstration Zone Science and Technology Project(No.2018NY-09)the Key R&D Project of Shaanxi Provinc(2019TSLNY01-03)。
文摘In this paper,an experiment system of wind-energy stirring heater has been designed and built.Its heating performance under the rotation speed of 300 r/min has been studied through changing stirring rotor’s layer number or using different working fluids.With the help of CFD numerical simulation method,we studied the influence factors including temperature rise,total heat,heating power of each experimental group,and analyzed why these factors have such an effect.The results show:increasing the layer number of the stirring rotors can increase the motion intensity of working fluid and improve the heating effect;the quantity of effective working fluid in the rotor area can be increased significantly with the increasing of liquid level;the working liquid with high density,low viscosity,low specific heat capacity will be the ideal one.
基金Supported by the National Key Project of Fundamental Research:The Land-Air Physical Processes over the Tibetan Plateau(TIPEX).
文摘A zonal domain primitive equation modeling system(ZDMS)is used to study the effects of the initial heating anomalies over the Tibetan Plateau and the western Pacific on the East Asian and the Chinese summer climate,the relative importance and the mechanisms are discussed.Results show that in spite of the different locations of the heating anomalies the influences of the two anomaly areas are much similar to each other when the scaling of the two areas is the same.The two areas of heating anomalies have their own affecting domains in which one is more important than the oth- er.In the western Pacific the heating anomaly over the western Pacific is more evident and in the Tibetan Plateau area the heating anomaly over the Tibetan Plateau is more obvious.For the east part of China the effects of the two heating anomalies both exist and almost have the equal impor- tance.The initial anomaly of the sea surface temperature(SST)over the western Pacific can be kept during the entire time integration while in the Tibetan Plateau it can not be maintained.
基金Project supported by the National Natural Science Foundation of China(Grant No.11572139).
文摘Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortices and DEP,our group proposed a device using a direct current(DC)electric field to achieve continuous particle separation.In this paper,the influence of the Joule heating effect on the continuous separation of particles is analyzed.Results show that the Joule heating effect is caused by the local electric field,and the Joule heating effect caused by adjusting the modulating voltage is more significant than that by driving voltage.Moreover,a non-uniform temperature distribution exists in the channel due to the Joule heating effect,and the temperature is the highest at the midpoint of the modulating electrodes.The channel flux can be enhanced,and the enhancement of both the channel flux and temperature is more obvious for a stronger Joule heating effect.In addition,the ability of the vortices to trap particles is enhanced since a larger DEP force is exerted on the particles with the Joule heating effect;and the ability of the vortex to capture particles is stronger with a stronger Joule heating effect.The separation efficiency can also be increased because perfect separation is achieved at a higher channel flux.Parameter optimization of the separation device,such as the convective heat transfer coefficient of the channel wall,the length of modulating electrode,and the width of the channel,is performed.
文摘The application of laser pulses with psec or shorter duration enables nonthermal efficient ultrahigh acceleration of plasma blocks with homogeneous high ion energies exceeding ion current densities of 10^(12) A cm^(-2). The effects of ultrahigh acceleration of plasma blocks with high energy proton beams are proposed for muon production in a compact magnetic fusion device. The proposed new scheme consists of an ignition fusion spark by muon catalyzed fusion(μCF) in a small mirror-like configuration where low temperature D–T plasma is trapped for a duration of 1 μs. This initial fusion spark produces sufficient alpha heating in order to initiate the fusion process in the main device. The use of a multi-fluid global particle and energy balance code allows us to follow the temporal evolution of the reaction rate of the fusion process in the device. Recent progress on the ICAN and IZEST projects for high efficient high power and high repetition rate laser systems allows development of the proposed device for clean energy production. With the proposed approaches,experiments on fusion nuclear reactions and μCF process can be performed in magnetized plasmas in existing kJ/PW laser facilities as the GEKKO-LFEX, the PETAL and the ORION or in the near future laser facilities as the ELI-NP Romanian pillar.
文摘In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage.
基金the National Natural Science Foundation of China(No.41272177)the Henan Polytechnic University Doctor Foundation(No.WS2013A11)
文摘The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree of damage is different, were selected from Tongchun, Qilin, and Pingdingshan mines. Using a series of experiments in an electrostatic field, we analyzed the characteristics of gas adsorption and diffusion in tectonic coal. We found that gas adsorption in coal conforms to the Langmuir equation in an electrostatic field. Both the depth of the adsorption potential well and the coal molecular electroneg- ativity increases under the action of an electrostatic field. A Joule heating effect was caused by changing the coal-gas system conductivity in an electrostatic field. The quantity of gas adsorbed and AP result from competition between the depth of the adsorption potential well, the coal molecular electronegativ- ity, and the Joule heating effect. △P peaks when the three factors control behavior equally. Compared with anthracite, the impact of the electrostatic field on the gas diffusion capacity of middle and high rank coals is greater. Compared with the original coal, the gas adsorption quantity,△P, and the gas diffusion capacity of tectonic coal are greater in an electrostatic field. In addition, the smaller the particle size of tectonic coal, the larger the△P.
文摘[Objective] The aim was to analyse the variation characteristics of temperature in Anqing City and urban heat island effect.[Method] Based on the observation data of temperature from Anqing Station,other surrounding meteorological stations and local automatic meteorological stations in suburbs,the annual variation of temperature and regional consistency was analysed,then the abrupt change of annual average temperature was tested by Mann-Kendall test,finally the influences of urban heat island effect on temperature variation in Anqing Station were studied.[Result] Affected by station migration and urban construction,the annual average temperature increased significantly in Anqing Station from 1977 to 2009,and the rising was more prominent after the middle of the 1990s.Mann-Kendall test showed that the change of temperature in Anqing Station was obviously abrupt around 1993;because of the development of urbanization,average temperature in Anqing Station was 0.8 ℃ higher than that in suburbs,and the minimum temperature rose more remarkably.In addition,urban heat island effect was the strongest in spring,followed by summer and autumn,while it was the weakest in winter.[Conclusion] The effects of urbanization development on the temperature in Anqing City were understood through this research.
基金funded this research through grant NITT/R&C/SEED GRANT/2021e22/P.14.
文摘Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air temperature in the urban areas compared with the surrounding rural areas,known as urban heat island effect.Thermal remote sensors measure the radiation emitted by ground objects,which can be used to estimate the land surface temperature and are beneficial for studying urban heat island effects.The present study investigates the spatial and temporal variations in the effects of urban heat island over Tiruchirappalli city in India during the summer and winter seasons.The study also identifies hot spots and cold spots within the study area.In this study,a significant land surface temperature difference was observed between the urban and rural areas,predominantly at night,indicating the presence of urban heat island at night.These diurnal land surface temperature fluctuations are also detected seasonally,with a relatively higher temperature intensity during the summer.The trend line analysis shows that the mean land surface temperature of the study area is increasing at a rate of 0.166 K/decade with p less than 0.01.By using the spatial autocorrelation method with the urban heat island index as the key parameter,hot spots with a 99 percent confidence level and a 95 percent confidence level were found within the urban area.A hot spot with 95 and 90 percent confidence level was identified outside the urban area.This spike in temperature for a particular region in the rural area is due to industry and the associated built-up area.The study also identified cold spots with a 90 percent confidence level within the rural area.However,cold spots with a 95 and 99 percent confidence level were not identified within the study area.
基金Under the auspices of National Natural Science Foundation of China(No.41101039,41371068)
文摘The cold-island effect of urban wetlands has received increasing attention in recent years due to its important role in the alleviation of urban heat islands.Hangzhou,a representative rapidly urbanizing city with rich wetlands in China,was selected as a case study for researching the changes that the urban wetlands have undergone and their impact on the urban thermal environment.Land surface temperature(LST) was acquired from the thermal infrared data of Landsat 5 Thematic Mapper(TM) images in 1990,1995,2000,2006,and 2010,using the single-channel method.The results are as follows:1) considering the changes in land use,the urban wetlands located to the west of Hangzhou have decreased significantly during 1990–2010 because of rapid urbanization.In the Xixi Wetland,the change in land use was relatively small and most of the water body and vegetation were preserved.However,to the east of the Xixi Wetland,large areas of water body and vegetation have been replaced by built-up land as a result of the urbanization process;2) considering the change in LST,it was found from land surface temperature retrieval that the changing spatial pattern of the thermal field was highly correlated with land use changes.Low temperature regions of the eastern Xixi Wetland were gradually eroded by high temperature regions,and the centroid of the heat island in East Xixi was found to be constantly shifting westward.In addition,the difference in LST between the Xixi Wetland and East Xixi has increased;3) considering the impact factors for this area,land use structure and patch shape were found to have a significant impact on LST,shown by the results of multiple linear stepwise regressions.Increasing the size of the wetlands in urban planning is considered to be the most effective measure in alleviating the urban heat island effect.Moreover,reducing the spatial complexity of landscape patches also contributes to the alleviation of the urban heat island effect.
基金supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciencesthe Major Research Plan of the National Natural Science Foundation of China(Grant Nos.91637312,91437219,91637208,and 41530426)the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund(second phase)(Grant No.U1501501)
文摘To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.
基金supported by programs of the Institute of Urban Meteorology (No. UMRF200705)the China Meteorological Administration (No. CMATG2010M24)the Institute of Plateau Meteorology (No. BROP200705)
文摘This paper analyzes the Urban Heat Island (UHI) effect in Lhasa City of Tibet using meteorological observations, the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST) data obtained from Earth Observing System/Moderate resolution Imaging Spectroradiometer (EOS/MODIS) information, and correlation and composite analyses. The results show: (1) Areas with high temperature are primarily located in the center of the city or nearby counties, while low temperature areas are in the suburbs of counties. The area with high temperature has expanded in recent years and some high-temperature centers have even migrated to certain other regions. (2) The UHI intensity tends to be stronger both in annual and seasonal variations, especially in winter. Also, LST is somewhat positively related to mean air temperature. (3) A negative correlation exists between the changes of LST and NDVI with the increase of vegetation from urban to rural areas in different seasons. (4) The UHI intensity is negatively correlated with precipitation while positively correlated with wind speed, and the relation between the UHI intensity and evaporation varies with the seasons, namely, the intensity is positively correlated with summer evaporation but negatively corre- lated with winter evaporation. (5) UHI intensity might be enhanced by intensified urbanization, wherein built-up areas expand, there is increased heat from human activity, and there is more artificial heat input to the atmosphere.
基金Under the auspices of the National Science Foundation of Sichuan Province(No.2022NSFSC1006)Science and Technology Innovation Capability Improvement Plan Project of Chengdu University of Information Technology in 2022(No.KYQN202215)the National Science Foundation of China(No.41505122)。
文摘With the advancement of urbanization,the urban heat island effect and ozone pollution have become hot issues in urban research.The urban heat island effect can impact ozone conversion,but its mechanism of action is unclear.In this study,the effects of the urban heat island effect on ozone concentration in Chengdu City,China,were investigated by comparing the ozone concentration under different heat island levels with ozone data from March 2020 to February 2021 and the temperature and wind field data of ERA5-Land during the same period.The results showed that:1)regarding the distribution characteristics,the ozone concentration in Chengdu presented a‘high in summer and low in winter’distribution.The ozone concentration in summer(189.54µg/m^(3))was nearly twice that in winter(91.99µg/m^(3)),and the ozone diurnal variation presented a‘single peak and single valley’distribution,with a peak at 16:00.2)For the characteristics of the heat island effect,the heat island intensity in Chengdu was obviously higher in spring than in other seasons,and the diurnal variation showed a‘single peak and single valley’distribution,with the peak and trough values appearing at 9:00 and 17:00,respectively.Spatially,the eastern part of Chengdu was a heat island,while the western and northwestern parts were mostly cold island.3)The correlation analysis between heat island intensity and ozone concentration showed a significant positive correlation but with a 7–8 h time lag.Ambient air temperature was not the main factor affecting ozone concentration.The heat island effect impacts the ozone concentration in two ways:changing the local heat budget to promote ozone generation and forming local urban wind,which promotes ozone diffusion or accumulation and forms different areas of low and high ozone values.
基金Supported by the National Water Pollution Control and Treatment Science and Technology Major Project(2012ZX07101-003-04-04)~~
文摘Seeds of Dodonaea viscosa (L.) Jacq, a representative species in dry and hot valleys in Southwest China, were chosen as experimental materials. In this experiment, the D. viscosa seeds were treated at 40, 60, 80 and 100℃ respectively before germination to study impacts of high temperature treatment on their generation rate and to further discuss the roles of fire during the process of vegetation formation in dry and hot valley areas of China. The results show that when the temperature was higher than 40 ℃, the germination rate of D. viscosa seeds was significantly higher than that of the control group, and the heat shock effect was apparent. The germination rate was the highest when the seeds were treated at 80 ℃ for 10 min, reaching 63.00%±2.55%. There was still a significant heat shock effect on the D. viscosa seeds which were stored for one year. In comparison with the conventional method of soaking seeds in hot water, the germination rate of D. viscose seeds which were treated at high temperature before germination increased significantly.
文摘The therapeutic actions of Qing Luo Yin (QLY清络饮) with heat property and Wen Luo Yin (WLY温络饮) with cold property on pain, swelling of the ankle, arthritis index and ultrastructures of synoviocytes were compared in rats of type II collagen-induced arthritis (CIA), with tripterygium glycosidorum (TG) used as control. The results indicated that both QLY and WLY could reduce pain, swelling of the ankle and the arthritis index of CIA, and QLY had better effects in reducing the swelling of the ankle and controlling the secondary pathological lesions as compared with WLY. Investigation on the ultrastructures of synoviocytes indicated that both QLY and WLY could reduce the number of Golgi apparatus, rough surface endoplasmic reticulum, dense bodies, matrix filaments and vacuoles so as to suppress the excessive secretion of synoviocytes in rats of CIA.