In order to study the effect of oxygen-enriched combustion technology on the temperature field and NOX emission in the continuous heating furnace,this paper studies the oxygen-enriched combustion of a pushing steel co...In order to study the effect of oxygen-enriched combustion technology on the temperature field and NOX emission in the continuous heating furnace,this paper studies the oxygen-enriched combustion of a pushing steel continuous heating furnace in a domestic company.This study utilizes numerical simulation method,establishes themathematicalmodels of flow,combustion andNOX generation combustion process in the furnace and analyzes the heat transfer process and NOX generation in the furnace under different air oxygen content and different wind ratio.The research results show that with the increase of oxygen content in the air,the combustion temperature in the furnace rises significantly,and the emission concentration of NOX increases.Furthermore,the NOX emission concentration is related to the proportion of primary and secondary air.展开更多
A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF c...A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress.展开更多
This article studies the transient heat conduction in a slab when passing through various sections of the furnace, and focuses on the thickness of the scale layer formed on the slab. The transient heat conduction beha...This article studies the transient heat conduction in a slab when passing through various sections of the furnace, and focuses on the thickness of the scale layer formed on the slab. The transient heat conduction behavior of a slab in various sections of the heating furnace is analyzed using the Laplace transformation method, including the pre-heating zone, the first heating zone, the second heating zone, and the soaking zone. The heating pattern of the furnace is then modified to reduce fuel consumption. The simulation results show that the scale layer formed on the slab significantly influences the quality of the hot rolled coil formed, and how the furnace parameters affect the efficiency of the furnace and the quality of the coil.展开更多
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ...The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.展开更多
Rehearing furnace is an important device with complex dynamic characteristicsin steel plants. The temperature tracing control of reheating furnace has great importance both tothe quality of slabs and energy saving. A ...Rehearing furnace is an important device with complex dynamic characteristicsin steel plants. The temperature tracing control of reheating furnace has great importance both tothe quality of slabs and energy saving. A model-based control strategy, multivariable constrainedcontrol (MCC) for the reheating furnace control is used. With this control method, the furnace istreated as a six-input-six-output general model with loops coupled in nature. Compared with thetraditional control, the proposed control strategy gets better temperature tracing accuracy andexhibits some energy saving feature. The simulation results show that the performance of the furnaceis greatly improved.展开更多
In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with ...In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.展开更多
A general numerical simulating program for three-dimensional (3-D) andtime-dependent fluid flow for a reheating furnace with multi-swirling-burners has been developedbased upon an arbitrary Lagrangian-Eulerian scheme ...A general numerical simulating program for three-dimensional (3-D) andtime-dependent fluid flow for a reheating furnace with multi-swirling-burners has been developedbased upon an arbitrary Lagrangian-Eulerian scheme (ALE) with the finite volume method. Theparameters of fluid flow in a reheating furnace with multi-swirling-burners was calculated and the3-D velocity distributions were obtained. The design of the burners was optimized for forming betterswirling flow. The simulation shows that the fluid flow in the reheating furnace with the optimizedburners is reasonable.展开更多
It has long been thought that a reheating furnace, with its inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers in steel plants. A novel software sensor is propos...It has long been thought that a reheating furnace, with its inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers in steel plants. A novel software sensor is proposed to make more effective use of those measurements that are already available, which has great importance both to slab quality and energy saving. The proposed method is based on the mixtures of Gaussian processes (GP) with the expectation maximization (EM) algorithm employed for parameter esti- mation of the mixture of models. The mixture model can alleviate the computational complexity of GP and also accords with the changes of operating condition in practical processes. It is demonstrated by on-line estimation of the furnace gas temperature in 1580 reheating furnace in Baosteel Corporation (Group).展开更多
By analyzing the characteristics of combustion and billet heating process, a 3-D transient computer fluid dynamic simulation system based on commercial software CFX4.3 and some self-programmed codes were developed to ...By analyzing the characteristics of combustion and billet heating process, a 3-D transient computer fluid dynamic simulation system based on commercial software CFX4.3 and some self-programmed codes were developed to simulate the thermal process in a continuous heating furnace using high temperature air combustion technology. The effects of different switching modes on injection entrancement of multi burners, combustion and billet heating process in furnace were analyzed numerically, and the computational results were compared with on-site measurement, which verified the practicability of this numerical simulation system. The results indicate that the flow pattern and distribution of temperature in regenerative reheating furnace with partial same-side-switching combustion mode are favorable to satisfy the high quality requirements of reheating, in which the terminal heating temperature of billets is more than 1 460 K and the temperature difference between two nodes is not more than 10 K. But since the surface average temperature of billets apart fi'om heating zone is only about 1 350 K and continued heating is needed in soaking zone, the design and operation of current state are still needed to be optimized to improve the temperature schedule of billet heating. The distribution of velocity and temperature in regenerative reheating furnace with same-side-switching combustion mode cannot satisfy the even and fast heating process. The terminal heating temperature of billets is lower than that of the former case by 30 K. The distribution of flow and temperature can be improved by using cross-switching combustion mode, whose terminal temperature of billets is about 1 470 K with small temperature difference within 10 K.展开更多
This paper provides a mathematical model for the billet reheating process in furnace.A new optimum method is brought up that the objective function is the integral value of enthalpy increasing process of a billet.Diff...This paper provides a mathematical model for the billet reheating process in furnace.A new optimum method is brought up that the objective function is the integral value of enthalpy increasing process of a billet.Different delays are simulated and calculated,some proper delay strategies are ob- tained.The on-line computer control model is de- veloped.The real production conditions simulated, the temperature deviation of drop out billet from the target temperature is kept within±15℃.展开更多
A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable conditio...A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results.展开更多
A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in th...A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in the heat transfer process within the first 0.6 m in the upper part of the reaction shaft,whilst the convection is dominant in the area below 0.6 m for the particle heating.In order to accelerate the particle ignition,it is necessary to enhance the convection,thus to speed up the particle heating.A high-speed preheated oxygen jet technology was then suggested to replace the nature gas combustion in the flash furnace,aiming to create a lateral disturbance in the gaseous phase around the particles,so as to achieve a slip velocity between the two phases and a high convective heat transfer coefficient.Numerical simulation was carried out for the cases with the high-speed oxygen jet and the normal nature gas burners.The results show that with the high-speed jet technology,particles are heated up more rapidly and ignited much earlier,especially within the area of the radial range of R=0.3−0.6 m.As a result,a more efficient smelting process can be achieved under the same operational condition.展开更多
Self-fluxing iron ore concentrates containing coal have good microwave Absorbability. With the voluminal heating property of microwave, the concentrates can be reduced uniformly and swiftly. The metallized semi-produc...Self-fluxing iron ore concentrates containing coal have good microwave Absorbability. With the voluminal heating property of microwave, the concentrates can be reduced uniformly and swiftly. The metallized semi-product can be directly charged into electric furnace for making clean steel. The total consumed energy of overall route is about 20 98 GJ.展开更多
Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical hea...Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical heating furnaces. Heat transfer models for continuous heating furnaces, batch-type heating furnaces, and regenerative heating furnaces are established, respectively. By analyzing the movement path of injected infinitesimal heat attached on steel or gas, thermal value equations of continuous, batch-type, and regenerative heating furnaces are derived. Then the influences of such factors as hot charging, gas preheating and intake time of heat on energy effective utilization degree are discussed by thermal value equations. The results show that thermal value rises with hot charging and air preheating for continuous heating furnaces, with shorter intake time when heat is attached on steel or longer intake time when heat is attached on gas for batch-type heating furnaces and that with more heat supply at early heating stage or less at late stage for regenerative heating furnaces.展开更多
This paper presented a dynamical mathematical model for reheating furnace based on energy balance, which consists of three submodels. With the inputting parameters, adopting the finite difference technique, not only t...This paper presented a dynamical mathematical model for reheating furnace based on energy balance, which consists of three submodels. With the inputting parameters, adopting the finite difference technique, not only the combustion gas temperature but also the temperature distribution of slabs in the furnace can be predicated. The dynamical mathematical model is the base for the further control and it also can be treated as a simulator of a reheating furnace, optimal and advanced controlling strategies can be applied based on the dynamical model.展开更多
By analyzing recent development of reheating furnace in Shougang,the direction of rolling reheating furnace is large type,high efficiency,lower pollution and automation etc.Many advanced technologies are integrated in...By analyzing recent development of reheating furnace in Shougang,the direction of rolling reheating furnace is large type,high efficiency,lower pollution and automation etc.Many advanced technologies are integrated in new rolling reheating furnace such as working beam,regenerative combustion,evaporation cooling and hot loading and hot feeding etc.It shows that reheating furnace technology is upgraded.During the process of product structure adjustment in Shougang,because product heating quality is improved,energy-saving of reheating furnace should pay attention to aspects such as energy-saving of heating variety steel,equality of heating steel,heating system,oxidation loss and so on.This will offer reference for energy-saving of domestic and overseas reheating furnace technology.展开更多
When the castable refractory linings are installed without drying out sufficiently and exposed to high humidity for a long time,white fibrous or powdery substance appears on the surface,which is called“efflorescence...When the castable refractory linings are installed without drying out sufficiently and exposed to high humidity for a long time,white fibrous or powdery substance appears on the surface,which is called“efflorescence”.The main reason is the cement of castable refractory linings contacts with C02 and moisture in the atmosphere to form calcium carbonate(CaC03).In general,efflorescence takes place more readily in lightweight castable refractories.In the walking beam reheating furnace construction project,there are many white powdery substances in the walking beams,because the construction procedure causes poor ventilation in the surrounding area,and the internal moisture of castable refractory linings cannot be evaporated effectively.In future,the project programming should consider the environmental humidity and surrounding ventilation.展开更多
Furnace area is regarded as looper between casting and hot rolling,which is very important for material flow balance and production organization as well as temperature regulation etc.In particular,when dealing with en...Furnace area is regarded as looper between casting and hot rolling,which is very important for material flow balance and production organization as well as temperature regulation etc.In particular,when dealing with energy saving and emission reduction and heating quality improving,pre;eating furnace is paid more attention.The radical target for preheating furnace is to transfer heating energy at the least cost. As we know,the preheating furnace is a dissipation system to obey conservation of energy law,that is to say that input energy always equals to output energy,in the meantime,the whole energy consuming is not reversible.Therefore increasing the efficiency of using energy is uppermost.In this paper,heating transfer efficiency is analysed and mathematical expression is given based on conservation of energy law.Typical optimal methods to improve preheating furnace transfer efficiency coming from foreign factories are presented.According to these methods,every furnace zone temperatures as control variable,target discharging temperature and temperature difference in slab thickness and the temperature between neighbouring zones as well as zone temporary temperature as restrictions,minimal energy consuming as optimizing target.Baosteel preheating furnace model structure and the complicated mapping relation of control parameter set and state set and aim set are presented.Important basic models in the preheating furnace model system are analysed including temperature tracking model and temperature forecasting model and discharging pacing model and slab heating curve.First slab temperature model structure and its peripheric parameter are introduced;second two pacing models are given including timing pacing mode using fixed discharging interval and mill pacing control mode using mill rolling pacing while Baosteel pacing forecasting model using long term and short term forecasting mode) is given;third a heating curve mathematical model considering heating quality and rolling pace and energy consuming is presented;in the end summary is done and the future way is lighted.Baosteel heating model including slab and billet and steel ingot have been developed,the actual applications show a good effect.The future woks include working procedure saving energy and system saving energy considering " Oder and rule" to achieve system harmony and rhythmization.Baosteel Blooming furnaces scheduling system is very useful for smooth production and saving energy.展开更多
The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,...The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits.展开更多
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con...The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.展开更多
基金Supported by the National Natural Science Foundation of China(52330003).
文摘In order to study the effect of oxygen-enriched combustion technology on the temperature field and NOX emission in the continuous heating furnace,this paper studies the oxygen-enriched combustion of a pushing steel continuous heating furnace in a domestic company.This study utilizes numerical simulation method,establishes themathematicalmodels of flow,combustion andNOX generation combustion process in the furnace and analyzes the heat transfer process and NOX generation in the furnace under different air oxygen content and different wind ratio.The research results show that with the increase of oxygen content in the air,the combustion temperature in the furnace rises significantly,and the emission concentration of NOX increases.Furthermore,the NOX emission concentration is related to the proportion of primary and secondary air.
文摘A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress.
文摘This article studies the transient heat conduction in a slab when passing through various sections of the furnace, and focuses on the thickness of the scale layer formed on the slab. The transient heat conduction behavior of a slab in various sections of the heating furnace is analyzed using the Laplace transformation method, including the pre-heating zone, the first heating zone, the second heating zone, and the soaking zone. The heating pattern of the furnace is then modified to reduce fuel consumption. The simulation results show that the scale layer formed on the slab significantly influences the quality of the hot rolled coil formed, and how the furnace parameters affect the efficiency of the furnace and the quality of the coil.
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant No.172102210124the Key Scientific Research projects in Colleges and Universities in Henan(Grant No.18B460003).
文摘The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.
基金This work was supported by a grant from State 863 High Technology R&D Project of China (No. 2001 AA413130) National Natural Science Foundation of China (No.60004001).]
文摘Rehearing furnace is an important device with complex dynamic characteristicsin steel plants. The temperature tracing control of reheating furnace has great importance both tothe quality of slabs and energy saving. A model-based control strategy, multivariable constrainedcontrol (MCC) for the reheating furnace control is used. With this control method, the furnace istreated as a six-input-six-output general model with loops coupled in nature. Compared with thetraditional control, the proposed control strategy gets better temperature tracing accuracy andexhibits some energy saving feature. The simulation results show that the performance of the furnaceis greatly improved.
基金Project(50876116) supported by the National Natural Science Foundation of ChinaProject(2007CK3077) supported by Innovative Program of Hunan Science and Technology AgencyProject(1343-77225) supported by the Graduate School of Central South University
文摘In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.
基金This research was financially supported by the Inner Mongolia Key Research Project (No. 2002061003)
文摘A general numerical simulating program for three-dimensional (3-D) andtime-dependent fluid flow for a reheating furnace with multi-swirling-burners has been developedbased upon an arbitrary Lagrangian-Eulerian scheme (ALE) with the finite volume method. Theparameters of fluid flow in a reheating furnace with multi-swirling-burners was calculated and the3-D velocity distributions were obtained. The design of the burners was optimized for forming betterswirling flow. The simulation shows that the fluid flow in the reheating furnace with the optimizedburners is reasonable.
基金This work was financially supported by the National High-Tech Research and Development Program of China(No.2002AA4120I0).
文摘It has long been thought that a reheating furnace, with its inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers in steel plants. A novel software sensor is proposed to make more effective use of those measurements that are already available, which has great importance both to slab quality and energy saving. The proposed method is based on the mixtures of Gaussian processes (GP) with the expectation maximization (EM) algorithm employed for parameter esti- mation of the mixture of models. The mixture model can alleviate the computational complexity of GP and also accords with the changes of operating condition in practical processes. It is demonstrated by on-line estimation of the furnace gas temperature in 1580 reheating furnace in Baosteel Corporation (Group).
基金Project(20010533009) supported by the Special Foundation for Doctorate Discipline of China
文摘By analyzing the characteristics of combustion and billet heating process, a 3-D transient computer fluid dynamic simulation system based on commercial software CFX4.3 and some self-programmed codes were developed to simulate the thermal process in a continuous heating furnace using high temperature air combustion technology. The effects of different switching modes on injection entrancement of multi burners, combustion and billet heating process in furnace were analyzed numerically, and the computational results were compared with on-site measurement, which verified the practicability of this numerical simulation system. The results indicate that the flow pattern and distribution of temperature in regenerative reheating furnace with partial same-side-switching combustion mode are favorable to satisfy the high quality requirements of reheating, in which the terminal heating temperature of billets is more than 1 460 K and the temperature difference between two nodes is not more than 10 K. But since the surface average temperature of billets apart fi'om heating zone is only about 1 350 K and continued heating is needed in soaking zone, the design and operation of current state are still needed to be optimized to improve the temperature schedule of billet heating. The distribution of velocity and temperature in regenerative reheating furnace with same-side-switching combustion mode cannot satisfy the even and fast heating process. The terminal heating temperature of billets is lower than that of the former case by 30 K. The distribution of flow and temperature can be improved by using cross-switching combustion mode, whose terminal temperature of billets is about 1 470 K with small temperature difference within 10 K.
文摘This paper provides a mathematical model for the billet reheating process in furnace.A new optimum method is brought up that the objective function is the integral value of enthalpy increasing process of a billet.Different delays are simulated and calculated,some proper delay strategies are ob- tained.The on-line computer control model is de- veloped.The real production conditions simulated, the temperature deviation of drop out billet from the target temperature is kept within±15℃.
文摘A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results.
基金funded by Jinguan Copper of Tongling Non-ferrous Metals Group Co., Ltd.
文摘A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in the heat transfer process within the first 0.6 m in the upper part of the reaction shaft,whilst the convection is dominant in the area below 0.6 m for the particle heating.In order to accelerate the particle ignition,it is necessary to enhance the convection,thus to speed up the particle heating.A high-speed preheated oxygen jet technology was then suggested to replace the nature gas combustion in the flash furnace,aiming to create a lateral disturbance in the gaseous phase around the particles,so as to achieve a slip velocity between the two phases and a high convective heat transfer coefficient.Numerical simulation was carried out for the cases with the high-speed oxygen jet and the normal nature gas burners.The results show that with the high-speed jet technology,particles are heated up more rapidly and ignited much earlier,especially within the area of the radial range of R=0.3−0.6 m.As a result,a more efficient smelting process can be achieved under the same operational condition.
文摘Self-fluxing iron ore concentrates containing coal have good microwave Absorbability. With the voluminal heating property of microwave, the concentrates can be reduced uniformly and swiftly. The metallized semi-product can be directly charged into electric furnace for making clean steel. The total consumed energy of overall route is about 20 98 GJ.
文摘Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical heating furnaces. Heat transfer models for continuous heating furnaces, batch-type heating furnaces, and regenerative heating furnaces are established, respectively. By analyzing the movement path of injected infinitesimal heat attached on steel or gas, thermal value equations of continuous, batch-type, and regenerative heating furnaces are derived. Then the influences of such factors as hot charging, gas preheating and intake time of heat on energy effective utilization degree are discussed by thermal value equations. The results show that thermal value rises with hot charging and air preheating for continuous heating furnaces, with shorter intake time when heat is attached on steel or longer intake time when heat is attached on gas for batch-type heating furnaces and that with more heat supply at early heating stage or less at late stage for regenerative heating furnaces.
文摘This paper presented a dynamical mathematical model for reheating furnace based on energy balance, which consists of three submodels. With the inputting parameters, adopting the finite difference technique, not only the combustion gas temperature but also the temperature distribution of slabs in the furnace can be predicated. The dynamical mathematical model is the base for the further control and it also can be treated as a simulator of a reheating furnace, optimal and advanced controlling strategies can be applied based on the dynamical model.
文摘By analyzing recent development of reheating furnace in Shougang,the direction of rolling reheating furnace is large type,high efficiency,lower pollution and automation etc.Many advanced technologies are integrated in new rolling reheating furnace such as working beam,regenerative combustion,evaporation cooling and hot loading and hot feeding etc.It shows that reheating furnace technology is upgraded.During the process of product structure adjustment in Shougang,because product heating quality is improved,energy-saving of reheating furnace should pay attention to aspects such as energy-saving of heating variety steel,equality of heating steel,heating system,oxidation loss and so on.This will offer reference for energy-saving of domestic and overseas reheating furnace technology.
文摘When the castable refractory linings are installed without drying out sufficiently and exposed to high humidity for a long time,white fibrous or powdery substance appears on the surface,which is called“efflorescence”.The main reason is the cement of castable refractory linings contacts with C02 and moisture in the atmosphere to form calcium carbonate(CaC03).In general,efflorescence takes place more readily in lightweight castable refractories.In the walking beam reheating furnace construction project,there are many white powdery substances in the walking beams,because the construction procedure causes poor ventilation in the surrounding area,and the internal moisture of castable refractory linings cannot be evaporated effectively.In future,the project programming should consider the environmental humidity and surrounding ventilation.
文摘Furnace area is regarded as looper between casting and hot rolling,which is very important for material flow balance and production organization as well as temperature regulation etc.In particular,when dealing with energy saving and emission reduction and heating quality improving,pre;eating furnace is paid more attention.The radical target for preheating furnace is to transfer heating energy at the least cost. As we know,the preheating furnace is a dissipation system to obey conservation of energy law,that is to say that input energy always equals to output energy,in the meantime,the whole energy consuming is not reversible.Therefore increasing the efficiency of using energy is uppermost.In this paper,heating transfer efficiency is analysed and mathematical expression is given based on conservation of energy law.Typical optimal methods to improve preheating furnace transfer efficiency coming from foreign factories are presented.According to these methods,every furnace zone temperatures as control variable,target discharging temperature and temperature difference in slab thickness and the temperature between neighbouring zones as well as zone temporary temperature as restrictions,minimal energy consuming as optimizing target.Baosteel preheating furnace model structure and the complicated mapping relation of control parameter set and state set and aim set are presented.Important basic models in the preheating furnace model system are analysed including temperature tracking model and temperature forecasting model and discharging pacing model and slab heating curve.First slab temperature model structure and its peripheric parameter are introduced;second two pacing models are given including timing pacing mode using fixed discharging interval and mill pacing control mode using mill rolling pacing while Baosteel pacing forecasting model using long term and short term forecasting mode) is given;third a heating curve mathematical model considering heating quality and rolling pace and energy consuming is presented;in the end summary is done and the future way is lighted.Baosteel heating model including slab and billet and steel ingot have been developed,the actual applications show a good effect.The future woks include working procedure saving energy and system saving energy considering " Oder and rule" to achieve system harmony and rhythmization.Baosteel Blooming furnaces scheduling system is very useful for smooth production and saving energy.
基金financially supported by the General Program of the National Natural Science Foundation of China (No. 52274326)the Fundamental Research Funds for the Central Universities (No. N2425031)+3 种基金Seventh Batch of Ten Thousand Talents Plan (No. ZX20220553)China Baowu Low Carbon Metallurgy Innovation Foundation (No. BWLCF202109)The key technology research and development and application of digital transformation throughout the iron and steel production process (No. 2023JH2/101800058)Liaoning Province Science and Technology Plan Joint Program (Key Research and Development Program Project)
文摘The prediction and control of furnace heat indicators are of great importance for improving the heat levels and conditions of the complex and difficult-to-operate hour-class delay blast furnace(BF)system.In this work,a prediction and feedback model of furnace heat indicators based on the fusion of data-driven and BF ironmaking processes was proposed.The data on raw and fuel materials,process op-eration,smelting state,and slag and iron discharge during the whole BF process comprised 171 variables with 9223 groups of data and were comprehensively analyzed.A novel method for the delay analysis of furnace heat indicators was established.The extracted delay variables were found to play an important role in modeling.The method that combined the genetic algorithm and stacking efficiently im-proved performance compared with the traditional machine learning algorithm in improving the hit ratio of the furnace heat prediction model.The hit ratio for predicting the temperature of hot metal in the error range of±10℃ was 92.4%,and that for the chemical heat of hot metal in the error range of±0.1wt%was 93.3%.On the basis of the furnace heat prediction model and expert experience,a feedback model of furnace heat operation was established to obtain quantitative operation suggestions for stabilizing BF heat levels.These sugges-tions were highly accepted by BF operators.Finally,the comprehensive and dynamic model proposed in this work was successfully ap-plied in a practical BF system.It improved the BF temperature level remarkably,increasing the furnace temperature stability rate from 54.9%to 84.9%.This improvement achieved considerable economic benefits.
基金the National Key R&D Program of China(No.2022YFE0208100)the National Natural Science Foundation of China(No.5274316)+1 种基金the Key Research and Development Plan of Anhui Province,China(No.202210700037)the Major Science and Technology Project of Xinjiang Uygur Autonomous Region,China(No.2022A01003).
文摘The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.