期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Research on Energy-Saving Performance of Intermittent Heating for Rooms in Hot Summer&ColdWinter Zone
1
作者 Guoqing Yu Nan Fang +1 位作者 Dingke Hu Wei Zhao 《Energy Engineering》 EI 2023年第7期1563-1582,共20页
In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has n... In the hot summer&cold winter zone in China,intermittent heating space for rooms is widely used.However,in comparison with continuous space heating,the energy-saving performance of intermittent space heating has not been sufficiently investigated.This paper studied the factors influencing the energy performance of intermittent heating for the representativeoffice inhot summer&coldwinter zone.Basedon theheatbalancemethod,adynamic thermalmodel of the intermittent heating roomwas built and tested by experiments.And then,it analyzed the total space heating load,the amount of energy saving and energy saving ratio of the intermittent heating under different preheating hours,occupation hours,required roomtemperatures,air change rates,overall heat transfer coefficients(U-value)of windows and wall materials.If the adjacent rooms were not heated,for a typical room occupied about 10 h a day,the energy-saving ratio of intermittent heating was about 30%compared with continuous heating.But the preheating power was higher than two times of continuous heating.The results also indicated that the occupation hours had a significant effect on energy saving amount and ratio,it should be noted that the energy saving ratio by intermittent heating was much lower than the unoccupied period ratio.Relative to other factors,the heating temperatures,room air change rates and U-value of windows,and room envelope materials had little effect on energy efficiency.If the adjacent rooms were heated in the same manner as the roomin question,the energy-saving ratio of the total load of intermittent heating was heavily reduced to 8.46%. 展开更多
关键词 Intermittent heating space heat load continuous heating hot summer&cold winter zone energy saving ratio
下载PDF
Experimental Study on the Performance of ORC System Based on Ultra-Low Temperature Heat Sources
2
作者 Tianyu Zhou Liang Hao +2 位作者 Xin Xu Meng Si Lian Zhang 《Energy Engineering》 EI 2024年第1期145-168,共24页
This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.Th... This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.The simulated heat source temperature(SHST)in this work was set from 39.51°C to 48.60°C by the simulated heat source module.The influence of load percentage of simulated heat source(LPSHS)between 50%and 70%,the rotary valve opening(RVO)between 20%and 100%,the resistive load between 36Ωand 180Ωor the no-load of the generator,as well as the autumn and winter ambient temperature on the system performance were studied.The results showed that the stability of the system was promoted when the generator had a resistive load.The power generation(PG)and generator speed(GS)of the system in autumn were better than in winter,but the expander pressure ratio(EPR)was lower than in winter.Keep RVO unchanged,the SHST,the mass flow rate(MFR)of the working medium,GS,and the PG of the system increased with the increasing of LPSHS for different generator resistance load values.When the RVO was 60%,LPSHS was 70%,the SHST was 44.15°C and the resistive load was 72Ω,the highest PG reached 15.11 W.Finally,a simulation formula was obtained for LPSHS,resistance load,and PG,and its correlation coefficient was between 0.9818 and 0.9901.The formula can accurately predict the PG.The experimental results showed that the standard deviation between the experimental and simulated values was below 0.0792,and the relative error was within±5%. 展开更多
关键词 ORC load percentage of simulated heat source resistive load rotary valve opening power generation
下载PDF
Integrated Behavior of Carbon and Copper Alloy Heat Sink Under Different Heat Loads and Cooling Conditions 被引量:1
3
作者 李化 李建刚 +1 位作者 陈俊浚 胡建生 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第4期2923-2925,共3页
An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a... An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a compliant layer between them. The behaviors of the integrated structure were evaluated in an electron beam facility under different heat loads and cooling conditions. The surface temperature and bulk temperature distribution were carefully measured by optical pyrometers and thermocouples under a steady state heat flux of 1 to 5 MW/m^2 and a water flow rate of 3 m^3/h, 4.5 m^3/h and 6 m^3/h, respectively. It was found that the surface temperature increased rapidly with the heat flux rising, but decreased only slightly with the water flow rate rising. The surface temperature reached approximately 1200℃ at 5 MW/m^2 of heat flux and 6 m^3/h of water flow. The primary experimental results indicate that the integrated design meets the requirements for the heat expelling capacity of the HT-7 device. A set of numerical simulations was also completed, whose outcome was in good accord with the experimental results. 展开更多
关键词 HT-7 tokamak carbon and copper alloy heat sink heat loads cooling conditions numerical simulation
下载PDF
Deep Learning for Multivariate Prediction of Building Energy Performance of Residential Buildings
4
作者 Ibrahim Aliyu Tai-Won Um +2 位作者 Sang-Joon Lee Chang Gyoon Lim Jinsul Kim 《Computers, Materials & Continua》 SCIE EI 2023年第6期5947-5964,共18页
In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effectiv... In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effective design and planning for estimating heating load(HL)and cooling load(CL)for energy saving have become paramount.In this vein,efforts have been made to predict the HL and CL using a univariate approach.However,this approach necessitates two models for learning HL and CL,requiring more computational time.Moreover,the one-dimensional(1D)convolutional neural network(CNN)has gained popularity due to its nominal computa-tional complexity,high performance,and low-cost hardware requirement.In this paper,we formulate the prediction as a multivariate regression problem in which the HL and CL are simultaneously predicted using the 1D CNN.Considering the building shape characteristics,one kernel size is adopted to create the receptive fields of the 1D CNN to extract the feature maps,a dense layer to interpret the maps,and an output layer with two neurons to predict the two real-valued responses,HL and CL.As the 1D data are not affected by excessive parameters,the pooling layer is not applied in this implementation.Besides,the use of pooling has been questioned by recent studies.The performance of the proposed model displays a comparative advantage over existing models in terms of the mean squared error(MSE).Thus,the proposed model is effective for EPB prediction because it reduces computational time and significantly lowers the MSE. 展开更多
关键词 Artificial intelligence(AI) convolutional neural network(CNN) cooling load deep learning ENERGY energy load energy building performance heating load PREDICTION
下载PDF
Analysis and Economic Evaluation of Hourly Operation Strategy Based on MSW Classification and LNG Multi-Generation System
5
作者 Xueqing Lu Yuetao Shi Jinsong Li 《Energy Engineering》 EI 2023年第6期1325-1352,共28页
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun... In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system. 展开更多
关键词 Municipal solid waste liquefied natural gas energy recovery combined power heating and cooling determining power by heating load net electrical efficiency energy utilization efficiency
下载PDF
A Deep Neural Network Coordination Model for Electric Heating and Cooling Loads Based on IoT Data 被引量:5
6
作者 Hongyang Jin Yun Teng +2 位作者 Tieyan Zhang Zedi Wang Zhe Chen 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第1期22-30,共9页
As the ubiquitous electric power internet of things(UEPIoT)evolves and IoT data increases,traditional scheduling modes for load dispatch centers have yielded a variety of chal-lenges such as calculation of real-time o... As the ubiquitous electric power internet of things(UEPIoT)evolves and IoT data increases,traditional scheduling modes for load dispatch centers have yielded a variety of chal-lenges such as calculation of real-time optimization,extraction of time-varying characteristics and formulation of coordinated scheduling strategy for capacity optimization of electric heating and cooling loads.In this paper,a deep neural network coor-dination model for electric heating and cooling loads based on the situation awareness(SA)of thermostatically controlled loads(TCLs)is proposed.First,a sliding window is used to adaptively preprocess the IoT node data with uncertainty.According to personal thermal comfort(PTC)and peak shaving contribution(PSC),a dynamic model for loads is proposed;meanwhile,personalized behavior and consumer psychology are integrated into a flexible regulation model of TCLs.Then,a deep Q-network(DQN)-based approach,using the thermal comfort and electricity cost as the comprehensive reward function,is proposed to solve the sequential decision problem.Finally,the simulation model is designed to support the validity of the deep neural network coordination model for electric heating and cooling loads,by using UEPIoT intelligent dispatching system data.The case study demonstrates that the proposed method can efficiently manage coordination with large-scale electric heating and cooling loads. 展开更多
关键词 Deep neural network electric heating and cooling load IoT data reinforcement learning
原文传递
Regression tree ensemble learning-based prediction of the heating and cooling loads of residential buildings 被引量:1
7
作者 Nikhil Pachauri Chang Wook Ahn 《Building Simulation》 SCIE EI CSCD 2022年第11期2003-2017,共15页
Building energy consumption is heavily dependent on its heating load(HL)and cooling load(CL).Therefore,an efficient building demand forecast is critical for ensuring energy savings and improving the operating efficacy... Building energy consumption is heavily dependent on its heating load(HL)and cooling load(CL).Therefore,an efficient building demand forecast is critical for ensuring energy savings and improving the operating efficacy of the heating,ventilation,and air conditioning(HVAC)system.Modern and specialized energy-efficient building modeling technologies may offer a fair estimate of the influence of different construction methods.However,deploying these tools could be time-consuming and complex for the user.Thus,in this article,an ensemble model based on decision trees and the least square-boosting(LS-boosting)algorithm known as the regression tree ensemble(RTE)is proposed for the accurate prediction of HL and CL.The hyper parameters of the RTE are optimized by shuffled frog leaping optimization(SFLA),which leads to SRTE.Stepwise regression(STR)and Gaussian process regression(GPR)based on different kernel functions are also designed for comparison purposes.Results demonstrate that the value of root mean squared error is reduced by 37%–68%and 30%–41%for HL and CL of residential buildings,respectively,by the proposed SRTE in comparison to other models.Furthermore,the findings from the real dataset support the proposed model’s effectiveness in predicting HVAC energy usage.It can be concluded that the proposed SRTE is more effective and accurate than other methods for predicting the energy consumption of HVAC systems. 展开更多
关键词 ENERGY heating load cooling load decision tree LS-boosting shuffled frog leaping optimization
原文传递
Investigation on automated loading of dynamic 3D heat source during welding simulation 被引量:3
8
作者 胡广旭 董志波 +2 位作者 魏艳红 宋奎晶 占小红 《China Welding》 EI CAS 2011年第2期41-45,共5页
Since loading complexand dynamic heat source is a difficult job during welding simulation process, methods are studied to add the load automatically. Firstly, an expert module for selecting welding heat source model i... Since loading complexand dynamic heat source is a difficult job during welding simulation process, methods are studied to add the load automatically. Firstly, an expert module for selecting welding heat source model is founded based on simulation knowledge and experienc Secondly, a method named as "High order routine" is presented, which creates subroutines of 3D dynamic heat source m'od, el for user. Then an automated tool is presented to load the welding heat source boundary based on Marc software. The tool uses Marc command file to robustly achieve the process. At last, an electron beam welding heat model is presented to express the "toading method. 展开更多
关键词 heat source. automated loading electron beam welding high order routine
下载PDF
Simulations of NBI fast ion loss in the presence of toroidal field ripple on EAST 被引量:1
9
作者 徐颖峰 胡友俊 +4 位作者 张晓东 徐行远 叶磊 肖小涛 郑振 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第9期13-23,共11页
NBI fast ion losses in the presence of the toroidal field ripple on EAST have been investigated by using the orbit code GYCAVA and the NBI code TGCO.The ripple effect was included in the upgraded version of the GYCAVA... NBI fast ion losses in the presence of the toroidal field ripple on EAST have been investigated by using the orbit code GYCAVA and the NBI code TGCO.The ripple effect was included in the upgraded version of the GYCAVA code.It is found that loss regions of NBI fast ions are mainly on the low field side near the edge in the presence of ripple.For co-current NBIs,the synergy effect of ripple and Coulomb collision on fast ion losses is dominant,and fast trapped ions located on the low field side are easily lost.The ripple well loss and the ripple stochastic loss of fast ions have been identified from the heat loads of co-current NBI fast ions.The ripple stochastic loss and the collisioninduced loss are much larger than the ripple well loss.Heat loads of lost fast ions are mainly localized on the right side of the radio frequency wave antennas from the inside view toward the first wall.For counter-current NBIs,the first orbit loss due to the magnetic drift is the dominant loss channel.In addition,fast ion loss fraction with ripple and collision for each NBI linearly increases with the effective charge number,which is related to the pitch angle scattering effect. 展开更多
关键词 fast ion loss RIPPLE NBI heat load COLLISION
下载PDF
Investigation on automated loading of dynamic 3D heat source model for welding simulation 被引量:1
10
作者 胡广旭 杨兴亚 +1 位作者 于兴滨 魏艳红 《China Welding》 CAS 2022年第3期48-52,共5页
Since programing complex and dynamic heat source model for welding simulation is a complex job,the parametric methods are studied in this paper.Firstly,an overall flow to achieve automatically modeling welding was int... Since programing complex and dynamic heat source model for welding simulation is a complex job,the parametric methods are studied in this paper.Firstly,an overall flow to achieve automatically modeling welding was introduced.Secondly,an expert module rule for selecting welding heat source model was founded,which is based on simulation knowledge and experiences.Thirdly,a modularity routine method was investigated using writing with C++programing,which automatically creates subroutines of 3D dynamic heat source model for user.To realize the dynamic weld path,the local weld path coordinate system was moved in the global coordinate system and it is used to model the direction of weld gun,welding path and welding pose.The weld path data file was prepared by the automatic tool for the welding heat source subroutines.All above functions were integrated in the user interface and the connection with architecture was introduced.At last,a laser beam welding heat source modeling was automatically modeled and the weld pool geometry was compared with the reported literature.It demonstrated that the automated tool is valid for welding simulation.Since modeling became convenient for welding simulation using the tool proposed,it could be easy and useful for welding engineers to acquire the needed information. 展开更多
关键词 welding heat source welding simulation 3D dynamic heat source model automated loading of heat source
下载PDF
Numerical and experimental study on shear coaxial injectors with hot hydrogen-rich gas/oxygen-rich gas and GH_2 /GO_2
11
作者 金平 李茂 蔡国飙 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期312-323,共12页
The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the ox... The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the oxidizer pressure drop to the combustor pressure (DP ), the velocity ratio of fuel to oxidizer (R V ), the thickness (WO ), and the recess (HO ) of the oxidizer injector post tip, the temperature of the hydrogen-rich gas (TH ) and the oxygen-rich gas (TO ), are integrated by the orthogonal experimental design method to investigate the performance of the shear coaxial injector. The gaseous hydrogen/oxygen at ambient temperature (GH2 /GO2 ), and the hot hydrogen-rich gas/oxygen-rich gas are used here. The length of the combustion (LC ), the average temperatures of the combustor wall (TW ), and the faceplate (TF ) are selected as the indicators. The tendencies of the influences of injector parameters on the combustion performance and the heat load of the combustor for the GH2 /GO2 case are similar to those in the hot propellants case. However, the combustion performance in the hot propellant case is better than that in the GH2/GO2 case, and the heat load of the combustor is also larger than that in the latter case. 展开更多
关键词 gas-gas injector combustion performance heat load experiment
下载PDF
Evolution of the Design of Cold Mass Support for the ITER Magnet Feeder System
12
作者 陆坤 宋云涛 +4 位作者 牛二武 周挺志 王忠伟 陈永华 朱银峰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第2期196-200,共5页
This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary d... This paper presents the evolution of the design of cold mass support for the ITER magnet feeder system. The glass fibers in the cylinder and the flanges of the normal G10 support are discontinuous in the preliminary design. The heat load of this support from the analysis is only 4.86 W. However, the mechanical test of the prototype showed that it can only endure 9 kN lateral force, which is significantly less than the required 20 kN. So, the configuration of the glass fibers in the cylinders and flanges of this G10 support are modified by changing it to a continuous and knitted type to reinforce the support, and then a new improved prototype is manufactured and tested. It could endure 15'kN lateral forces this time, but still not meet the required 20 kN. Finally, the SS316LN material is chosen for the cold mass supports. The analysis results show that it is safe under 20 kN lateral forces with the heat load increased to 14.8 W. Considering the practical application, the requirements of strength is of primary importance. So, this SS316LN cold mass support is acceptable for the ITER magnet feeder system. On the other hand, the design idea of using continuous and knitted glass fibers to reinforce the strength of a G10 support is a good reference for the case with a lower heat load and not too high Lorentz force. 展开更多
关键词 cold mass support ITER magnet feeder heat load
下载PDF
Thermo-Mechanical Calculation of Vacuum Plasma Spraying Tungsten Coating as the Plasma Facing Material for Tokamak Device
13
作者 朱大焕 刘洋 +1 位作者 陈俊凌 鄢容 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第9期794-798,共5页
Thermo-mechanical simulation of the vacuum plasma spraying tungsten (VPS-W) coating on the actively cooled CuCrZr substrate under the relevant quasi-stationary heat load and transient heat flux for tokamak device, i... Thermo-mechanical simulation of the vacuum plasma spraying tungsten (VPS-W) coating on the actively cooled CuCrZr substrate under the relevant quasi-stationary heat load and transient heat flux for tokamak device, is conducted by finite element analysis (FEA). It is shown that the failure of copper softening is likely to occur at the W/Cu compliant interlayer under a typical quasi-stationary heat load and the surface failure of plastic yield damage to occur at the surface edge under a transient heat flux. In addition, the critical transient heat flux for melting is approximately 0.75 MJ/m2 for about 0.5 ms. All these results are useful for the design of the plasma facing components (PFCs) and the plasma operation in the future. 展开更多
关键词 VPS-W coating heat load transient flux finite element analysis
下载PDF
Performance Evaluation Methods for Multi-stream Plate-Fin Heat Exchanger
14
作者 Li Jun Wang Yu +2 位作者 Jiang Yanlong Shi Hong Zheng Wenyuan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期553-560,共8页
Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference un... Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference uniformity factor are improved.Evaluation factors above and performance of heat exchanger are compared and analyzed by taking aircraft three-stream condenser as an example.The results demonstrate that the mean square error of accumulative heat load is common result of total heat load and excess heat load between passages.So it can be influenced by passage arrangement,flow inlet parameters as well as flow patterns.Dimensionless parameter of mean square error of accumulative heat load can reflect the influence of passage arrangement to heat exchange performance and will not change dramatically with the variation of flow inlet parameters and flow patterns.Temperature-difference uniformity factor is influenced by passage arrangement and flow patterns.It remains basically unchanged under a certain range of flow inlet parameters. 展开更多
关键词 multi-stream plate-fin heat exchanger mean square error of accumulative heat load temperature-difference uniformity factor performance evaluation
下载PDF
Temperature of the Limiter Surface Measured by IR Camera in HT-7 Tokamak
15
作者 史博 林慧 +6 位作者 黄娟 罗南昌 龚先祖 张晓东 罗广南 杨钟时 李强 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第2期158-161,共4页
Temperature measurement by IR (infrared) camera was performed oll HT-T tokamak. particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat ... Temperature measurement by IR (infrared) camera was performed oll HT-T tokamak. particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat load on the surface of the movable limiter could be obtained through ANSYS with the temperature measured by IR-camera. This work could be important for the temperature measurement and heat load study on the first wall of EAST device. 展开更多
关键词 surface temperature. HT-7 tokamak long pulse discharge. heat load
下载PDF
Optimal Thermal Insulation Thickness in Isolated Air-Conditioned Buildings and Economic Analysis
16
作者 Mousa M. Mohamed 《Journal of Electronics Cooling and Thermal Control》 2020年第2期23-45,共23页
The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effe... The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effects on the transmission heat through outer walls, ceiling and glazing windows. Good thermal isolation for buildings is important to reduce the transmitted heat and consumed power. The buildings models are constructed from common materials with 0 - 16 cm of thermal insulation thickness in the outer walls and ceilings, and double-layers glazing windows. The building heat loads were calculated for two types of walls and ceiling with and without thermal insulation. The cooling load temperature difference method, <em>CLTD</em>, was used to estimate the building heat load during a 24-hour each day throughout spring, summer, autumn and winter seasons. The annual cooling degree-day, <em>CDD</em> was used to estimate the optimal thermal insulation thickness and payback period with including the solar radiation effect on the outer walls surfaces. The average saved energy percentage in summer, spring, autumn and winter are 35.5%, 32.8%, 33.2% and 30.7% respectively, and average yearly saved energy is about of 33.5%. The optimal thermal insulation thickness was obtained between 7 - 12 cm and payback period of 20 - 30 month for some Egyptian Cities according to the Latitude and annual degree-days. 展开更多
关键词 Building Heat Load Cooling Load Temperature Difference Energy Saving Power Consumption Annual Cooling Degree-Day Optimal Thermal Insulation Thickness Payback Period
下载PDF
Numerical simulation study on the hygrothermal performance of building exterior walls under dynamic wind-driven rain condition
17
作者 Xing Hu Huibo Zhang Hui Yu 《Building Simulation》 SCIE EI CSCD 2024年第2期207-221,共15页
Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated ... Wind-driven rain(WDR)has a significant influence on the hygrothermal performance,durability,and energy consumption of building components.The calculation of WDR loads using semi-empirical models has been incorporated into the boundary conditions of coupled heat and moisture transfer models.However,prior research often relied on fixed WDR absorption ratio,which fail to accurately capture the water absorption characteristics of porous building materials under rainfall scenarios.Therefore,this study aims to investigate the coupled heat and moisture transfer of exterior walls under dynamic WDR boundary conditions,utilizing an empirically obtained WDR absorption ratio model based on field measurements.The developed coupled heat and moisture transfer model is validated against the HAMSTAD project.The findings reveal that the total WDR flux calculated with the dynamic WDR boundary is lower than that obtained with the fixed WDR boundary,with greater disparities observed in orientations experiencing higher WDR loads.The variations in moisture flow significantly impact the surface temperature and relative humidity of the walls,influencing the calculation of cooling and heating loads by different models.Compared to the transient heat transfer model,the coupled heat and moisture transfer model incorporating dynamic WDR boundary exhibits maximum increases of 17.6%and 16.2%in cooling and heating loads,respectively.The dynamic WDR boundary conditions provide more precise numerical values for surface moisture flux,offering valuable insights for the thermal design of building enclosures and load calculations for HVAC systems. 展开更多
关键词 wind-driven rain building component hygrothermal model transient simulation cooling and heating loads
原文传递
Comparison of space cooling/heating load under non-uniform indoor environment with convective heat gain/loss from envelope 被引量:2
18
作者 Shuai Yan Xianting Li 《Building Simulation》 SCIE EI CSCD 2021年第3期565-578,共14页
The indoor parameters are generally non-uniform distributed.Consequently,it is important to study the space cooling/heating load oriented to local requirements.Though the influence of indoor set point,heat sources,and... The indoor parameters are generally non-uniform distributed.Consequently,it is important to study the space cooling/heating load oriented to local requirements.Though the influence of indoor set point,heat sources,and ambient temperature of convective thermal boundary on cooling/heating load has been investigated in the uniform environment in previous research,the influence of these factors,particularly the convective heat gain/loss through a building envelope,on cooling/heating load of non-uniform environment has not yet been investigated.Therefore,based on the explicit expression of indoor temperature under the convective boundary condition,the expression of space cooling/heating load with convective heat transfer from the building envelope is derived and compared through case studies.The results can be summarized as follows.(1)The convective heat transferred through the building envelope is significantly related to the airflow patterns:the heating load in the case with ceiling supply air,where the supply air has a smaller contribution to the local zone,is 24%higher than that in the case with bottom supply air.(2)The degree of influence from each thermal boundary to the local zone of space cooling cases is close to that of a uniform environment,while the influence of each factor,particularly that of supply air,is non-uniformly distributed in space heating.(3)It is possible to enhance the influence of supply air and heat source with a reasonable airflow pattern to reduce the space heating load.In general,the findings of this study can be used to guide the energy savings of rooms with non-uniform environments for space cooling/heating. 展开更多
关键词 cooling/heating load non-uniform environment space cooling/heating temperature distribution building envelope
原文传递
Computation and field experiment validation of greenhouse energy load using building energy simulation model 被引量:4
19
作者 Taehwan Ha In-bok Lee +1 位作者 Kyeong-seok Kwon Se-Woon Hong 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2015年第6期116-127,共12页
Greenhouse Building Energy Simulation(BES)models were developed to estimate the energy load using TRNSYS(ver.16,University of Wisconsin,USA),a commercial BES program.Validation was conducted based on data recorded dur... Greenhouse Building Energy Simulation(BES)models were developed to estimate the energy load using TRNSYS(ver.16,University of Wisconsin,USA),a commercial BES program.Validation was conducted based on data recorded during field experiments.The BES greenhouse modeling is reliable,as validation showed 5.2%and 5.5%compared with two field experiments,respectively.As the next step,the heating characteristics of the greenhouses were analyzed to predict the maximum and annual total heating loads based on the greenhouse types and target locations in the Republic of Korea using the validated greenhouse model.The BES-computed results indicated that the annual heating load was greatly affected by the local climate conditions of the target region.The annual heating load of greenhouses located in Chuncheon,the northernmost region,was 44.6%higher than greenhouses in Jeju,the southernmost area among the studied regions.The regression models for prediction of maximum heating load of Venlo type greenhouse and widespan type greenhouse were developed based on the BES computed results to easily predict maximum heating load at field and they explained nearly 95%and 80%of the variance in the data set used,respectively,with the predictor variables.Then a BES model of geothermal energy system was additionally designed and incorporated into the BES greenhouse model.The feasibility of the geothermal energy system for greenhouse was estimated through economic analysis. 展开更多
关键词 GREENHOUSE building energy simulation(BES) energy load dynamic analysis geothermal energy heating load
原文传递
Room thermal load prediction based on analytic hierarchy process and back-propagation neural networks 被引量:2
20
作者 Xin Tan Zhenjing Zhu +1 位作者 Guoxin Sun Linfeng Wu 《Building Simulation》 SCIE EI CSCD 2022年第11期1989-2002,共14页
Accurate prediction of the heat load is the basic premise of intelligent regulation of the heating system,which helps to realize effective management of heating,ventilation,air conditioning system.For the problem that... Accurate prediction of the heat load is the basic premise of intelligent regulation of the heating system,which helps to realize effective management of heating,ventilation,air conditioning system.For the problem that the weight of each influencing factor is not taken into account in the current heat load prediction and is not highly targeted,this article deeply explores the influence of different factors on the room heat load,and we propose a method to calculate room heat load prediction based on the combination of analytic hierarchy process(AHP)and back-propagation(BP)neural network.Firstly,eight environmental factors affecting the heat load are selected as prediction inputs through parametric analysis,and then the weights of each input are determined by AHP and normalize the prediction data by combining expert opinions,and finally do one-to-one training the quantified score and the room heat load to predict the future heat load by BP neural network.The simulation tests show that the mean absolute relative error(MARE)of the proposed prediction method is 5.40%.This article also verifies the influence of different expert opinions on the stability of the model.The results show that the proposed method can guarantee higher prediction accuracy and stability. 展开更多
关键词 heating system heat load prediction analytic hierarchy process back-propagation neural network
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部