After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the ...After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the characteristics of the temperature control w ith big inertia,pure time-delay and degeneration,a fuzzy adaptive PID controller is designed w ith the advantages of the fuzzy control and PID algorithm,and the simulation model is established according to the characteristics of heating metering system.Simulation results show that the fuzzy adaptive PID controller proposed has small overshoot,short oscillation cycle,high precision and strong anti-jamming capability in comparison w ith conventional PID controller,w hich could meet the requirement of the dynamic and steady-state performance of the heating process.展开更多
A netal network-based fuzzy self-tuning PID controller theh is prope to control the dynamic process ofpulse TIG welding uses fuzzy logic and neural network to adjust the parameters of PID controller on line, and simul...A netal network-based fuzzy self-tuning PID controller theh is prope to control the dynamic process ofpulse TIG welding uses fuzzy logic and neural network to adjust the parameters of PID controller on line, and simula-tion results show that the controller has not only simple nonlinear control of tfuzzy control, but also the learning capabil-ity and adaptability of neural netwrk.展开更多
In this paper a PID Fuzzy-Neural controller (FNC) is designed as an Active Queue Management (AQM) in internet routers to improve the performance of Fuzzy Proportional Integral (FPI) controller for congestion avoidance...In this paper a PID Fuzzy-Neural controller (FNC) is designed as an Active Queue Management (AQM) in internet routers to improve the performance of Fuzzy Proportional Integral (FPI) controller for congestion avoidance in computer networks. A combination of fuzzy logic and neural network can generate a fuzzy neural controller which in association with a neural network emulator can improve the output response of the controlled system. This combination uses the neural network training ability to adjust the membership functions of a PID like fuzzy neural controller. The goal of the controller is to force the controlled system to follow a reference model with required transient specifications of minimum overshoot, minimum rise time and minimum steady state error. The fuzzy membership functions were tuned using the propagated error between the plant outputs and the desired ones. To propagate the error from the plant outputs to the controller, a neural network is used as a channel to the error. This neural network uses the back propagation algorithm as a learning technique. Firstly the parameters of PID of Fuzzy-Neural controller are selected by trial and error method, but to get the best controller parameters the Particle Swarm Optimization (PSO) is used as an optimization method for tuning the PID parameters. From the obtained results, it is noted that the PID Fuzzy-Neural controller provides good tracking performance under different circumstances for congestion avoidance in computer networks.展开更多
In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single st...In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single stand cold rolling mill, and the fuzzy controller for monitor AGC system is designed. The analysis of dynamic performance for traditional PID Smith prediction controller and fuzzy self-tuning PID Smith prediction controller is done by MAT- LAB toolbox. The simulation results show that fuzzy self-tuning PID Smith controller has stronger robustness, faster response and higher static accuracy than traditional PID Smith controller.展开更多
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ...The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.展开更多
In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neura...In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neural network and fuzzy integration. By indeterminacy artificial intelligence, the problem of fixing the membership functions of input variables and fuzzy rules was solved in an actual fuzzy system and the nonlinear mapping between variables was implemented by neural network. The algorithm has the adaptive learning ability of neural network and the indetermi- nacy of a cloud model in processing knowledge, which makes the fuzzy system have more persuasion in the process of knowledge inference, realizing the online adaptive regulation of PID parameters and avoiding the defects of the traditional PID controller. Simulation results show that the algorithm is simple, fast and robust with good control performance and application value.展开更多
基金Project Supported by Education Department of Liaoning Province(LT2012005)
文摘After heat is metered in each house unit,the heating system is regulated by variable flow.The temperature of the return w ater is controlled to regulate the flow to realize the temperature regulation.According to the characteristics of the temperature control w ith big inertia,pure time-delay and degeneration,a fuzzy adaptive PID controller is designed w ith the advantages of the fuzzy control and PID algorithm,and the simulation model is established according to the characteristics of heating metering system.Simulation results show that the fuzzy adaptive PID controller proposed has small overshoot,short oscillation cycle,high precision and strong anti-jamming capability in comparison w ith conventional PID controller,w hich could meet the requirement of the dynamic and steady-state performance of the heating process.
文摘A netal network-based fuzzy self-tuning PID controller theh is prope to control the dynamic process ofpulse TIG welding uses fuzzy logic and neural network to adjust the parameters of PID controller on line, and simula-tion results show that the controller has not only simple nonlinear control of tfuzzy control, but also the learning capabil-ity and adaptability of neural netwrk.
文摘In this paper a PID Fuzzy-Neural controller (FNC) is designed as an Active Queue Management (AQM) in internet routers to improve the performance of Fuzzy Proportional Integral (FPI) controller for congestion avoidance in computer networks. A combination of fuzzy logic and neural network can generate a fuzzy neural controller which in association with a neural network emulator can improve the output response of the controlled system. This combination uses the neural network training ability to adjust the membership functions of a PID like fuzzy neural controller. The goal of the controller is to force the controlled system to follow a reference model with required transient specifications of minimum overshoot, minimum rise time and minimum steady state error. The fuzzy membership functions were tuned using the propagated error between the plant outputs and the desired ones. To propagate the error from the plant outputs to the controller, a neural network is used as a channel to the error. This neural network uses the back propagation algorithm as a learning technique. Firstly the parameters of PID of Fuzzy-Neural controller are selected by trial and error method, but to get the best controller parameters the Particle Swarm Optimization (PSO) is used as an optimization method for tuning the PID parameters. From the obtained results, it is noted that the PID Fuzzy-Neural controller provides good tracking performance under different circumstances for congestion avoidance in computer networks.
基金Item Sponsored by National Natural Science Foundation of China (50634030)
文摘In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single stand cold rolling mill, and the fuzzy controller for monitor AGC system is designed. The analysis of dynamic performance for traditional PID Smith prediction controller and fuzzy self-tuning PID Smith prediction controller is done by MAT- LAB toolbox. The simulation results show that fuzzy self-tuning PID Smith controller has stronger robustness, faster response and higher static accuracy than traditional PID Smith controller.
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant No.172102210124the Key Scientific Research projects in Colleges and Universities in Henan(Grant No.18B460003).
文摘The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace.
基金Sponsored by National High-tech Research and Development Project of China(2009AA04Z143)Natural Science Foundation of Hebei Province of China(E2006001038)Science and Technology Project of Hebei Province of China(10212101D)
文摘In connection with the characteristics of multi-disturbance and nonlinearity of a system for flatness control in cold rolling process, a new intelligent PID control algorithm was proposed based on a cloud model, neural network and fuzzy integration. By indeterminacy artificial intelligence, the problem of fixing the membership functions of input variables and fuzzy rules was solved in an actual fuzzy system and the nonlinear mapping between variables was implemented by neural network. The algorithm has the adaptive learning ability of neural network and the indetermi- nacy of a cloud model in processing knowledge, which makes the fuzzy system have more persuasion in the process of knowledge inference, realizing the online adaptive regulation of PID parameters and avoiding the defects of the traditional PID controller. Simulation results show that the algorithm is simple, fast and robust with good control performance and application value.