期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Effect of Spatial Structure Character of Heat Source on the Ray Path and the Evolution of Wave Energy of Meridional Wave Train
1
作者 徐祥德 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1991年第1期87-98,共12页
This paper studies correlations between the spatial structure character of thermal forcing and deformation and the amplitude of rays of meridional wave train. It is shown that if thermal forcing appears a meridional l... This paper studies correlations between the spatial structure character of thermal forcing and deformation and the amplitude of rays of meridional wave train. It is shown that if thermal forcing appears a meridional linear variation the rays of quasi-stationary planetary wave may propagate along oblique lines and if the meridional variability of heat source has second order term the rays show distinct deformation as a great circular route. Additionally, the inhomogeneous distribution may cause lower frequency oscillations in mid- and low-latitudes. The combination of zonal and meridional wave numbers and distributive character of heat source may form an inverse mechanism of variational trend of generized wave energy, reflecting in some degree the physical process of transition between meridional and zonal flow patterns. 展开更多
关键词 The Effect of Spatial Structure Character of Heat Source on the Ray path and the Evolution of Wave Energy of Meridional Wave Train path Wave
下载PDF
The characteristics of sea fog with different airflow over the Huanghai Sea in boreal spring 被引量:6
2
作者 HUANG Jian WANG Xin +3 位作者 ZHOU Wen HUANG Huijun WANG Dongxiao ZHOU Faxiu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2010年第4期3-12,共10页
Using the observations from ICOADS datasets and contemporaneous NCEP/NCAR reanalysis datasets during 1960-2002,the study classifies the airflows in favor of sea fog over the Huanghai (Yellow) Sea in boreal spring (... Using the observations from ICOADS datasets and contemporaneous NCEP/NCAR reanalysis datasets during 1960-2002,the study classifies the airflows in favor of sea fog over the Huanghai (Yellow) Sea in boreal spring (April-May) with the method of trajectory analysis,and analyzes the changes of proportions of warm and cold sea fogs along different paths of airflow.According to the heat balance equation,we investigate the relationships between the marine meteorological conditions and the proportion of warm and cold sea fog along different airflow paths.The major results are summarized as follows.(1) Sea fogs over the Huanghai Sea in spring are not only warm fog but also cold fog.The proportion of warm fog only accounts for 44% in April,while increases as high as 57% in May.(2) Four primary airflow paths leading to spring sea fog are identified.They are originated from the northwest,east,southeast and southwest of the Huanghai Sea,respectively.The occurrence ratios of the warm sea fog along the east and southeast airflow paths are high of 55% and 70%,while these along the southwest and northwest airflow paths are merely 17.9% and 50%.(3) The key physical processes governing the warm/cold sea fog are heat advection transport,longwave radiation cooling at fog top,solar shortwave warming and latent heat flux between airsea interfaces.(4) The characteristics of sea fog along the four airflow paths relate closely to the conditions of water vapor advection,and the vertical distribution of relative humidity. 展开更多
关键词 spring sea fog over the Huanghai Sea airflow paths water vapor flux heat advection vertical distribution of water vapor
下载PDF
Heat transfer enhancement in MOSFET mounted on different FR4 substrates by thermal transient measurement
3
作者 Norazlina M S Dheepan Chakravarthii M K +2 位作者 Shanmugan S Mutharasu D Shahrom Mahmud 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期549-556,共8页
Miniaturization of electronic package leads to high heat density and heat accumulation in electronics device, resulting in short life time and premature failure of the device. Junction temperature and thermal resistan... Miniaturization of electronic package leads to high heat density and heat accumulation in electronics device, resulting in short life time and premature failure of the device. Junction temperature and thermal resistance are the critical parameters that determine the thermal management and reliability in electronics cooling. Metal oxide field effect transistor(MOSFET)is an important semiconductor device for light emitting diode-integrated circuit(LED IC) driver application, and thermal management in MOSFET is a major challenge. In this study, investigations on thermal performance of MOSFET are performed for evaluating the junction temperature and thermal resistance. Suitable modifications in FR4 substrates are proposed by introducing thermal vias and copper layer coating to improve the thermal performance of MOSFET. Experiments are conducted using thermal transient tester(T3ster) at 2.0 A input current and ambient temperature varying from25℃ to 75℃. The thermal parameters are measured for three proposed designs: FR4 with circular thermal vias, FR4 with single strip of copper layer and embedded vias, and FR4 with I-shaped copper layer, and compared with that of plain FR4 substrate. From the experimental results, FR4I-shaped shows promising results by 33.71% reduction in junction temperature and 54.19% reduction in thermal resistance. For elevated temperature, the relative increases in junction temperature and thermal resistance are lower for FR4I-shaped than those for other substrates considered. The introduction of thermal vias and copper layer plays a significant role in thermal performance. 展开更多
关键词 metal oxide field effect transistor(MOSFET) thermal transient measurement heat transfer path FR4
下载PDF
STUDY ON THE STABILITY STRUCTURE OF SYNOPTIC SCALE SYSTEMS,THE BIFURCATION OF PHASE.PATH CHARACTERISTICS AND THE INFLUENCE OF THE TIME-OSCILLATION OF HEAT SOURCE 被引量:1
4
作者 徐祥德 《Acta meteorologica Sinica》 SCIE 1989年第1期83-89,共7页
This paper discusses the stability structure and the bifurcation of phase path characteristics of synoptic scale system.The analytic results show that the catastrophe of the synoptic scale disturbance may be caused by... This paper discusses the stability structure and the bifurcation of phase path characteristics of synoptic scale system.The analytic results show that the catastrophe of the synoptic scale disturbance may be caused by the nonlinear effects of barotropic and baroclinic instability and advection of ambient large-scale flow.Also, foregoing nonlinear effects on the speed of development and decay of the system are presented in the processes deviating from or approaching to equilibrium state.It has been found that there is a resonance phenomenon between the time-oscillation of heat source and the atmospheric disturbance. 展开更多
关键词 STUDY ON THE STABILITY STRUCTURE OF SYNOPTIC SCALE SYSTEMS THE BIFURCATION OF PHASE.path CHARACTERISTICS AND THE INFLUENCE OF THE TIME-OSCILLATION OF HEAT SOURCE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部