Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo...Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.展开更多
The permittivity of low grade Panzhuhua ilmenite ore at 2.45 GHz in the temperatures from 20 ℃ up to 100 ℃ was measured using the technology of open-ended coaxial sensor combined with theoretical computation. The re...The permittivity of low grade Panzhuhua ilmenite ore at 2.45 GHz in the temperatures from 20 ℃ up to 100 ℃ was measured using the technology of open-ended coaxial sensor combined with theoretical computation. The results show that both the real (ε′) and imaginary (ε′) part of complex permittivity (ε′-jε′) of the ilmenite significantly increase with temperature. The loss tangent (tanδ) is a quadratic function of temperature, and the penetration depth of ilmenite decreases with temperature increase from 20 ℃to 100 ℃ The increase of the sample temperature under microwave radiation displays a nonlinear relationship between the temperature (T) and microwave heating time (t). The positive feedback interaction between complex permittivity and sample temperature amplifies the interaction between ilmenite and the microwave radiation. The optimum dimensions for uniform heat deposition vary from 10 cm to 5 cm (about two power penetration depths) in a sample being irradiated from both sides in a 2.45 GHz microwave field when temperature increases from room temperature to 100 ℃展开更多
The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and...The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and 0.45,and the molding temperature was specified at 10 and 20℃.The experimental results show that,as the water-binder ratio increases,the value of the second temperature peak on the temperature curve of the cement paste decreases,and the age at which the peak appears is delayed.The higher the water-cement ratio,the higher the hydration heat release in the early period of cement hydration,but this trend reverses in the late period.There are intersection points of the total hydration heat curve of the cement pastes under the influence of the water-cement ratio,and this law can be observed at both molding temperatures.With the increase in the molding temperature,the age of the second temperature peak on the temperature curve of the cement paste will advance,but the temperature peak will decrease.The higher the molding temperature,the earlier the acceleration period of the cement hydration began,and the larger the hydration heat of the cement in the early stage,but the smaller the total heat in the late period.A subsection function calculation model of the hydration heat,which was based on the existing models,was proposed in order to predict the heat of the hydration of the concrete.展开更多
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th...Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.展开更多
Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spat...Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spatial variations of the AUHI across China and the underlying climate and ecological drivers.A total of 355 urban clusters were used.We performed an attribution analysis of the AUHI to elucidate the mechanisms underlying its formation.The results show that the midday AUHI is negatively correlated with climate wetness(humid:0.34 K;semi-humid:0.50 K;semi-arid:0.73 K).The annual mean midnight AUHI does not show discernible spatial patterns,but is generally stronger than the midday AUHI.The urban–rural difference in convection efficiency is the largest contributor to the midday AUHI in the humid(0.32±0.09 K)and the semi-arid(0.36±0.11 K)climate zones.The release of anthropogenic heat from urban land is the dominant contributor to the midnight AUHI in all three climate zones.The rural vegetation density is the most important driver of the daytime and nighttime AUHI spatial variations.A spatial covariance analysis revealed that this vegetation influence is manifested mainly through its regulation of heat storage in rural land.展开更多
Marine heatwaves(MHWs)can cause irreversible damage to marine ecosystems and livelihoods.Appropriate MHW characterization remains difficult,because the choice of a sea surface temperature(SST)temporal baseline strongl...Marine heatwaves(MHWs)can cause irreversible damage to marine ecosystems and livelihoods.Appropriate MHW characterization remains difficult,because the choice of a sea surface temperature(SST)temporal baseline strongly influences MHW identification.Following a recent work suggesting that there should be a communicating baseline for long-term ocean temperature trends(LTT)and MHWs,we provided an effective and quantitative solution to calculate LTT and MHWs simultaneously by using the ensemble empirical mode decomposition(EEMD)method.The long-term nonlinear trend of SST obtained by EEMD shows superiority over the traditional linear trend in that the data extension does not alter prior results.The MHWs identified from the detrended SST data exhibited low sensitivity to the baseline choice,demonstrating the robustness of our method.We also derived the total heat exposure(THE)by combining LTT and MHWs.The THE was sensitive to the fixed-period baseline choice,with a response to increasing SST that depended on the onset time of a perpetual MHW state(identified MHW days equal to the year length).Subtropical areas,the Indian Ocean,and part of the Southern Ocean were most sensitive to the long-term global warming trend.展开更多
An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of...An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors.展开更多
Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering applic...Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering application.The heating process,the calculation of surface heat transfer coefficient and the accurate temperature control method were studied based on measured heating temperature for the large-size thick plate.The results show that,the temperature difference between the surface and center of the thick plate is small.Based on the temperature uniformity,the surface heat transfer coefficient was calculated,and it is constant below300°C,but grows greatly over300°C.Consequently,a lumped parameter method(LPM)was developed to predict the plate temperature.A stepped solution treatment was designed by using LPM,and verified by finite element method(FEM)and experiments.Temperature curves calculated by LPM and FEM agree well with the experimental data,and the LPM is more convenient in engineering application.展开更多
The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is p...The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood of the initial and final steady states, the transient responses can be expressed with a steady-state solution plus a perturbation series. By combining these two solutions, a complete solution in the entire time domain is achieved. In the region in which the analytical approach is applicable, numerical results are in good agreement with the analytical results, showing reliability of the methods. The result shows two distinct features of the unsteady response. In a short period just after a sudden increase in the wall temperature, the direction of the wall heat flux is reverted, and a new inflexion near the wall occurs in the profile of the thermal boundary layer. This is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, meaning that, in a long-term aerodynamic heating process considering only unsteady surface temperature, the unsteady characteristics of the flow can be ignored, and the traditional quasi-steady aerodynamic heating prediction methods are still valid.展开更多
Effects of temperature and heating rate on the mechanical properties of the tensile specimens of magnesium alloy AZ31 were experimentally investigated using a Gleeble-1500 thermo-mechanical material testing system.The...Effects of temperature and heating rate on the mechanical properties of the tensile specimens of magnesium alloy AZ31 were experimentally investigated using a Gleeble-1500 thermo-mechanical material testing system.The metallurgraphs of the fracture section of the specimens were also experimentally observed and analyzed for exploring their failure mechanism under different temperatures and heating rates.The results show that the higher the temperature,the lower the ultimate strength of the specimens.And the higher the heating rate,the higher the ultimate strength of the specimens.The high temperatures and high heating rates will induce microvoids in the specimens which make the specimens failure under relatively low loads.展开更多
This work has performed a numerical simulation of the temperature field during microwave heating of polyolefin-absorber mixture by means of a combined electric and thermal model.A finite difference time domain was use...This work has performed a numerical simulation of the temperature field during microwave heating of polyolefin-absorber mixture by means of a combined electric and thermal model.A finite difference time domain was used to model the electric field distribution within the cavity,while the finite difference method was used to calculate the temperature field distribution in different reactors.This study has focused only on the process from room temperature to 500 K for reducing heating time and energy consumption.This temperature range is a process with high energy consumption,difficult to control and great influence on the follow-up reaction.Temperature dependence of dielectric properties and thermal properties of heated materials are fully considered and simulated through an iterative process.The simulation results show that input power,the size and location of the heated materials,the position of the waveguide,and the kinds of microwave absorbers are important factors affecting the heating process.As a result,the uniform temperature distribution(the temperature difference Tdb10 K)can be achieved by choosing the appropriate input power(500–2000 W),the appropriate proportion of microwave absorber(the volume ratio of Si C to HDPE is 30:70),and combining with the moving and rotating of the heated materials.The uniform temperature field obtained without mechanical stirring is very important for reducing energy consumption and subsequent reactions.展开更多
Through studying on the heating process of titanium microalloyed steels, the influence of heating temperature on the austenite grain size and the solid dissolution, precipitation law of Ti microalloying element were a...Through studying on the heating process of titanium microalloyed steels, the influence of heating temperature on the austenite grain size and the solid dissolution, precipitation law of Ti microalloying element were analyzed, and the results showed that, the austenite grain size increased with the increase of heating temperature, When the heating temperature reached 1050°C and 1250°C, the austenite grains appeared the obvious coarsening process twice. TiC particles dissolved gradually as the heating temperature increased. When the heating temperature rose to 1100°C, TiC particles disappeared basically, When the heating temperature rose to 1250°C, TiN particles began to be dissolved and grow up.展开更多
Experiments were carried out on carburizing and temperature rising of the semi steel melt in a plasma induction furnace.Influence of many factors, such as power supply mode,position of the plasma torch and bottom b...Experiments were carried out on carburizing and temperature rising of the semi steel melt in a plasma induction furnace.Influence of many factors, such as power supply mode,position of the plasma torch and bottom blown gas stirring,on heating efficiency and melt temperature distribution was studied. Melt temperature could be effectively controlled by plasma heating,and carbon content of semi steel melt increased from 1.92 % to 4.58 %, and the utilization rate of carbon reached up to 61.57 % during carburizing of the melt.展开更多
Expansion is an important operation in the hot extrusion production line of seamless steel tubes, which is to produce proper hollow billets for extrusion. The billet goes through induction heating before expanded to a...Expansion is an important operation in the hot extrusion production line of seamless steel tubes, which is to produce proper hollow billets for extrusion. The billet goes through induction heating before expanded to acquire a proper temperature. In this study, the effects of three types of inhomogeneous temperature fields on 321 stainless tubes during the expansion process were simulated. The results have indicated that it was an optimum temperature filed for expansion, where the temperature varied linearly along radial direction and the temperature was lower on the inner surface. This temperature field is beneficial to improving the stability of expansion and ensuring dimensional accuracy and increasing the utilization rate of tubular billet material.展开更多
A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable conditio...A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results.展开更多
The response and failure of magnesium alloy AZ31 specimens subjected to different pre-loaded-stress levels and heating rates were investigated with a Gleeble-1500 thermo-mechanical material testing system.It is found ...The response and failure of magnesium alloy AZ31 specimens subjected to different pre-loaded-stress levels and heating rates were investigated with a Gleeble-1500 thermo-mechanical material testing system.It is found that the increases of either pre-loaded stresses or heating-rates decrease the failure temperatures of the specimens.The metallographs of the tested specimens were also observed.It is shown that the high heating-rate may cause stronger local thermal inconsistency,which remarkably increases the microdefects and reduces the macroscopic mechanical properties of the material.展开更多
This paper discusses the temperature field distribution of piezoelectric stack with heating and thermal insulation device in cryogenic temperature environment. Firstly,the model of the piezoelectric damper is simplifi...This paper discusses the temperature field distribution of piezoelectric stack with heating and thermal insulation device in cryogenic temperature environment. Firstly,the model of the piezoelectric damper is simplified and established by using partial-differential heat conduction equation. Secondly,the two-dimensional Du Fort-Frankel finite difference scheme is used to discretize the thermal conduction equation,and the numerical solution of the transient temperature field of piezoelectric stack driven by heating film at different positions is obtained by programming iteration. Then,the cryogenic temperature cabinet is used to simulate the low temperature environment to verify the numerical analysis results of the temperature field. Finally,the finite difference results are compared with the finite results and the experimental data in steady state and transient state,respectively. Comparison shows that the results of the finite difference method are basically consistent with the finite element and the experimental results,but the calculation time is shorter. The temperature field distribution results obtained by the finite difference method can verify the thermal insulation performance of the heating system and provide data basis for the temperature control of piezoelectric stack.展开更多
We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method w...We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method with symbolic computation, we obtain the exact analytical thermal traveling wave solution, which describes the non-uniform temperature distribution inside the bodies. The found exact solution is used to investigate the temperature distribution in the tissues. It is found that the surrounding medium with higher temperature does not necessarily imply that the tissue will quickly (after a short duration of heating process) reach the desired temperature. It is also found that increased perfusion causes a decline in local temperature.展开更多
Artificial neural network has unique advantages for massively parallel processing, distributed storage capacity and self-learning ability. The paper mainly constructs neural network identifier and neural network contr...Artificial neural network has unique advantages for massively parallel processing, distributed storage capacity and self-learning ability. The paper mainly constructs neural network identifier and neural network controller for system identification and control on temperature and hmnidity of heating and drying system of materials. And the paper introduces the structure and principles of neural network, and focuses on analyzing learning algorithm, training algorithm and limitation of the most widely applied multi-layer feed-forward neural network ( BP network) , based on which the paper proposes introducing momentum to improve BP network.展开更多
High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and eco...High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21808110,22078155,and 21878149).
文摘Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.
基金Projects(51090385,5114703)supported by the National Natural Science Foundation of ChinaProject(2012DFA70570)supported by the International S&T Cooperation Program of ChinaProject(2011FZ038)supported by the Applied Basic Research Project of Yunnan Province
文摘The permittivity of low grade Panzhuhua ilmenite ore at 2.45 GHz in the temperatures from 20 ℃ up to 100 ℃ was measured using the technology of open-ended coaxial sensor combined with theoretical computation. The results show that both the real (ε′) and imaginary (ε′) part of complex permittivity (ε′-jε′) of the ilmenite significantly increase with temperature. The loss tangent (tanδ) is a quadratic function of temperature, and the penetration depth of ilmenite decreases with temperature increase from 20 ℃to 100 ℃ The increase of the sample temperature under microwave radiation displays a nonlinear relationship between the temperature (T) and microwave heating time (t). The positive feedback interaction between complex permittivity and sample temperature amplifies the interaction between ilmenite and the microwave radiation. The optimum dimensions for uniform heat deposition vary from 10 cm to 5 cm (about two power penetration depths) in a sample being irradiated from both sides in a 2.45 GHz microwave field when temperature increases from room temperature to 100 ℃
基金the National Natural Science Foundation of China(Nos.52368032 and 51808272)the China Postdoctoral Science Foundation(No.2023M741455)+1 种基金the Tianyou Youth Talent Lift Program of Lanzhou Jiaotong UniversityGansu Province Youth Talent Support Project(No.GXH20210611-10)。
文摘The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and 0.45,and the molding temperature was specified at 10 and 20℃.The experimental results show that,as the water-binder ratio increases,the value of the second temperature peak on the temperature curve of the cement paste decreases,and the age at which the peak appears is delayed.The higher the water-cement ratio,the higher the hydration heat release in the early period of cement hydration,but this trend reverses in the late period.There are intersection points of the total hydration heat curve of the cement pastes under the influence of the water-cement ratio,and this law can be observed at both molding temperatures.With the increase in the molding temperature,the age of the second temperature peak on the temperature curve of the cement paste will advance,but the temperature peak will decrease.The higher the molding temperature,the earlier the acceleration period of the cement hydration began,and the larger the hydration heat of the cement in the early stage,but the smaller the total heat in the late period.A subsection function calculation model of the hydration heat,which was based on the existing models,was proposed in order to predict the heat of the hydration of the concrete.
基金This work was supported by Construction Simulation and Support Optimization of Hydraulic Tunnel Based on Bonded Block-Synthetic Rock Mass Method and Hubei Province Postdoctoral Innovative Practice Position.
文摘Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.
基金supported by the National Key R&D Program of China (Grant No.2019YFA0607202)the National Natural Science Foundation of China (Grant Nos. 42021004 and 42005143)+2 种基金support by the Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No. KYCX21_0978)support by the Open Research Fund Program of the Key Laboratory of Urban Meteorology,China Meteorological Administration (Grant No. LUM-2023-12)the 333 Project of Jiangsu Province (Grant No. BRA2022023)
文摘Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spatial variations of the AUHI across China and the underlying climate and ecological drivers.A total of 355 urban clusters were used.We performed an attribution analysis of the AUHI to elucidate the mechanisms underlying its formation.The results show that the midday AUHI is negatively correlated with climate wetness(humid:0.34 K;semi-humid:0.50 K;semi-arid:0.73 K).The annual mean midnight AUHI does not show discernible spatial patterns,but is generally stronger than the midday AUHI.The urban–rural difference in convection efficiency is the largest contributor to the midday AUHI in the humid(0.32±0.09 K)and the semi-arid(0.36±0.11 K)climate zones.The release of anthropogenic heat from urban land is the dominant contributor to the midnight AUHI in all three climate zones.The rural vegetation density is the most important driver of the daytime and nighttime AUHI spatial variations.A spatial covariance analysis revealed that this vegetation influence is manifested mainly through its regulation of heat storage in rural land.
基金Supported by the National Natural Science Foundation of China(Nos.41821004,42276025)the Natural Science Foundation of Shandong Province(No.ZR2021MD027)+1 种基金the National Key Research and Development Program of China(No.2022YFE0140500)the Project of“Development of China-ASEAN blue partnership”started in 2021.
文摘Marine heatwaves(MHWs)can cause irreversible damage to marine ecosystems and livelihoods.Appropriate MHW characterization remains difficult,because the choice of a sea surface temperature(SST)temporal baseline strongly influences MHW identification.Following a recent work suggesting that there should be a communicating baseline for long-term ocean temperature trends(LTT)and MHWs,we provided an effective and quantitative solution to calculate LTT and MHWs simultaneously by using the ensemble empirical mode decomposition(EEMD)method.The long-term nonlinear trend of SST obtained by EEMD shows superiority over the traditional linear trend in that the data extension does not alter prior results.The MHWs identified from the detrended SST data exhibited low sensitivity to the baseline choice,demonstrating the robustness of our method.We also derived the total heat exposure(THE)by combining LTT and MHWs.The THE was sensitive to the fixed-period baseline choice,with a response to increasing SST that depended on the onset time of a perpetual MHW state(identified MHW days equal to the year length).Subtropical areas,the Indian Ocean,and part of the Southern Ocean were most sensitive to the long-term global warming trend.
基金Supported by the National Science and Technology Major Project of China(2012ZX04003081)
文摘An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors.
基金Project(2012CB619500)supported by the National Basic Research Program of ChinaProject(51375503)supported by the National Natural Science Foundation of China+1 种基金Project(2016YFB0300901)supported by the Major State Research Program of ChinaProject(2013A017)supported by the Bagui Scholars Program of Guangxi Zhuang Autonomous Region,China
文摘Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering application.The heating process,the calculation of surface heat transfer coefficient and the accurate temperature control method were studied based on measured heating temperature for the large-size thick plate.The results show that,the temperature difference between the surface and center of the thick plate is small.Based on the temperature uniformity,the surface heat transfer coefficient was calculated,and it is constant below300°C,but grows greatly over300°C.Consequently,a lumped parameter method(LPM)was developed to predict the plate temperature.A stepped solution treatment was designed by using LPM,and verified by finite element method(FEM)and experiments.Temperature curves calculated by LPM and FEM agree well with the experimental data,and the LPM is more convenient in engineering application.
基金supported by the National Natural Science Foundation of China (No. 90716011)
文摘The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood of the initial and final steady states, the transient responses can be expressed with a steady-state solution plus a perturbation series. By combining these two solutions, a complete solution in the entire time domain is achieved. In the region in which the analytical approach is applicable, numerical results are in good agreement with the analytical results, showing reliability of the methods. The result shows two distinct features of the unsteady response. In a short period just after a sudden increase in the wall temperature, the direction of the wall heat flux is reverted, and a new inflexion near the wall occurs in the profile of the thermal boundary layer. This is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, meaning that, in a long-term aerodynamic heating process considering only unsteady surface temperature, the unsteady characteristics of the flow can be ignored, and the traditional quasi-steady aerodynamic heating prediction methods are still valid.
基金Projects(10872221,50621403)supported by the National Natural Science Foundation of China
文摘Effects of temperature and heating rate on the mechanical properties of the tensile specimens of magnesium alloy AZ31 were experimentally investigated using a Gleeble-1500 thermo-mechanical material testing system.The metallurgraphs of the fracture section of the specimens were also experimentally observed and analyzed for exploring their failure mechanism under different temperatures and heating rates.The results show that the higher the temperature,the lower the ultimate strength of the specimens.And the higher the heating rate,the higher the ultimate strength of the specimens.The high temperatures and high heating rates will induce microvoids in the specimens which make the specimens failure under relatively low loads.
基金financial support from the National Natural Science Foundation of China(No.21776288)the State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences(No.MPCS2020-A-01)+1 种基金the National R&D Infrastructure and Facility Development Program of China,Fundamental Science Data Sharing Platform(DKA2017-12-02-05)CAS informatization project during the Thirteenth Five-Year Plan“Key Database Construction and Application Services for the Discipline of Chemistry”(XXH1350303-103)。
文摘This work has performed a numerical simulation of the temperature field during microwave heating of polyolefin-absorber mixture by means of a combined electric and thermal model.A finite difference time domain was used to model the electric field distribution within the cavity,while the finite difference method was used to calculate the temperature field distribution in different reactors.This study has focused only on the process from room temperature to 500 K for reducing heating time and energy consumption.This temperature range is a process with high energy consumption,difficult to control and great influence on the follow-up reaction.Temperature dependence of dielectric properties and thermal properties of heated materials are fully considered and simulated through an iterative process.The simulation results show that input power,the size and location of the heated materials,the position of the waveguide,and the kinds of microwave absorbers are important factors affecting the heating process.As a result,the uniform temperature distribution(the temperature difference Tdb10 K)can be achieved by choosing the appropriate input power(500–2000 W),the appropriate proportion of microwave absorber(the volume ratio of Si C to HDPE is 30:70),and combining with the moving and rotating of the heated materials.The uniform temperature field obtained without mechanical stirring is very important for reducing energy consumption and subsequent reactions.
文摘Through studying on the heating process of titanium microalloyed steels, the influence of heating temperature on the austenite grain size and the solid dissolution, precipitation law of Ti microalloying element were analyzed, and the results showed that, the austenite grain size increased with the increase of heating temperature, When the heating temperature reached 1050°C and 1250°C, the austenite grains appeared the obvious coarsening process twice. TiC particles dissolved gradually as the heating temperature increased. When the heating temperature rose to 1100°C, TiC particles disappeared basically, When the heating temperature rose to 1250°C, TiN particles began to be dissolved and grow up.
文摘Experiments were carried out on carburizing and temperature rising of the semi steel melt in a plasma induction furnace.Influence of many factors, such as power supply mode,position of the plasma torch and bottom blown gas stirring,on heating efficiency and melt temperature distribution was studied. Melt temperature could be effectively controlled by plasma heating,and carbon content of semi steel melt increased from 1.92 % to 4.58 %, and the utilization rate of carbon reached up to 61.57 % during carburizing of the melt.
文摘Expansion is an important operation in the hot extrusion production line of seamless steel tubes, which is to produce proper hollow billets for extrusion. The billet goes through induction heating before expanded to acquire a proper temperature. In this study, the effects of three types of inhomogeneous temperature fields on 321 stainless tubes during the expansion process were simulated. The results have indicated that it was an optimum temperature filed for expansion, where the temperature varied linearly along radial direction and the temperature was lower on the inner surface. This temperature field is beneficial to improving the stability of expansion and ensuring dimensional accuracy and increasing the utilization rate of tubular billet material.
文摘A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results.
基金Projects(10872221,50621403)supported by the National Natural Science Foundation of China
文摘The response and failure of magnesium alloy AZ31 specimens subjected to different pre-loaded-stress levels and heating rates were investigated with a Gleeble-1500 thermo-mechanical material testing system.It is found that the increases of either pre-loaded stresses or heating-rates decrease the failure temperatures of the specimens.The metallographs of the tested specimens were also observed.It is shown that the high heating-rate may cause stronger local thermal inconsistency,which remarkably increases the microdefects and reduces the macroscopic mechanical properties of the material.
文摘This paper discusses the temperature field distribution of piezoelectric stack with heating and thermal insulation device in cryogenic temperature environment. Firstly,the model of the piezoelectric damper is simplified and established by using partial-differential heat conduction equation. Secondly,the two-dimensional Du Fort-Frankel finite difference scheme is used to discretize the thermal conduction equation,and the numerical solution of the transient temperature field of piezoelectric stack driven by heating film at different positions is obtained by programming iteration. Then,the cryogenic temperature cabinet is used to simulate the low temperature environment to verify the numerical analysis results of the temperature field. Finally,the finite difference results are compared with the finite results and the experimental data in steady state and transient state,respectively. Comparison shows that the results of the finite difference method are basically consistent with the finite element and the experimental results,but the calculation time is shorter. The temperature field distribution results obtained by the finite difference method can verify the thermal insulation performance of the heating system and provide data basis for the temperature control of piezoelectric stack.
文摘We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method with symbolic computation, we obtain the exact analytical thermal traveling wave solution, which describes the non-uniform temperature distribution inside the bodies. The found exact solution is used to investigate the temperature distribution in the tissues. It is found that the surrounding medium with higher temperature does not necessarily imply that the tissue will quickly (after a short duration of heating process) reach the desired temperature. It is also found that increased perfusion causes a decline in local temperature.
文摘Artificial neural network has unique advantages for massively parallel processing, distributed storage capacity and self-learning ability. The paper mainly constructs neural network identifier and neural network controller for system identification and control on temperature and hmnidity of heating and drying system of materials. And the paper introduces the structure and principles of neural network, and focuses on analyzing learning algorithm, training algorithm and limitation of the most widely applied multi-layer feed-forward neural network ( BP network) , based on which the paper proposes introducing momentum to improve BP network.
文摘High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.