Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is ...Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is proposed. Simulation results show that it is effective to overcome the influence of time delay on stability of control system and the system possesses strong robust and good dynamic performance..展开更多
Greenhouse is an important place for crop growth, and it is necessary to control the temperature of growing environment in winter. In addition, the root temperature underground also plays a decisive role for plants gr...Greenhouse is an important place for crop growth, and it is necessary to control the temperature of growing environment in winter. In addition, the root temperature underground also plays a decisive role for plants growth. Adopting underground heating to increase the temperature can effectively improve the yield of crops. The objective of our study was to model the heat transfer of greenhouse underfloor heating which is analyzed and simplified based on the FLUENT software by changing the several important factors that affect the temperature distribution: pipe diameter, pipe spacing, laying depth, supplied water temperature and flow rate, as boundary conditions to simulate the changes of the soil temperature field around the winter night environment. Researching the temperature distribution of the greenhouse, the soil surface and the plant root layer under the different parameters and the basic rules of the heating system are summarized. The results show that the water supply temperature, pipe spacing and diameter of the pipe has a greater impact on the ground and room temperature, and the laying depth has greater impact on the temperature uniformity of the ground, the velocity of water in pipe has little impact on the uniformity of ground temperature.展开更多
This research was conducted to investigate the effects of three heating systems on cucumber yield,and cost and gas volume consumed in greenhouses located in Varamin region,Tehran province,Iran.Conventional heating sys...This research was conducted to investigate the effects of three heating systems on cucumber yield,and cost and gas volume consumed in greenhouses located in Varamin region,Tehran province,Iran.Conventional heating systems used in the greenhouses are:central heating system(including boiler+hot water pipes),gas heater system(including double-walled tank+blower)and traditional furnace system(including ignition chamber+torch+pipes carrying a mixture of hot air and flammable gases).The study was carried out for two consecutive cucumber cultivation periods from January to June.Average values of crop yield,volume and cost of gas consumed were determined separately for each heating system.Results of the study indicated that the central heating system with the highest crop yield(295 t/ha),and the lowest volume(100,000 m^(3)/ha)and cost(840 USD/ha)of gas consumed was the best and most suitable heating system for greenhouses producing cucumbers in Varamin region and other regions with the same and similar climate as well as regions with active greenhouses in the cold season.展开更多
This research was conducted to study the effect of different heating systems in cucumber production greenhouses in Varamin region,Tehran province,Iran on crop yield,volume and cost of gas consumed.Three types of conve...This research was conducted to study the effect of different heating systems in cucumber production greenhouses in Varamin region,Tehran province,Iran on crop yield,volume and cost of gas consumed.Three types of conventional heating systems,namely the central heating system(including boiler+hot water pipes),gas heater system(including double-walled tank+blower)and traditional furnace system(including ignition chamber+torch+pipes carrying a mixture of hot air and flammable gases)were studied during two consecutive periods of greenhouse cucumber cultivation in the cold season(from January to June),and average values of crop yield,volume and cost of gas consumed were determined separately.Results of the study indicated that the central heating system with the highest crop yield(295 tha^-1),and the lowest volume(100,000 m3ha^-1)and cost(210,000,000 Rialsha^-1)of gas consumed was the best and most suitable heating system for greenhouses producing cucumbers in Varamin region and other regions with the same and similar climate as well as regions with active greenhouses in the cold season.展开更多
Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,Nort...Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,North Carolina(NC),USA,has built a 6.1 m×9.1 m greenhouse,called the“Nexus”to test the integrated sustainable energy heating system for growing season extension with less energy cost.This is done by using on-farm biomass resources/wastes such as agricultural waste and wood chips to produce energy coupled with solar water heating to store and supplement required thermal inputs.Growing season extension with heated greenhouses increases the availability of local food throughout the year,expands available markets and increases farmers’profits.Nexus includes an above ground 5,680-L water storage tank and an aquaculture pond.It is supported by a small-scale pyrolysis system,an anaerobic digestion system,solar thermal and compost heating.The preliminary result showed that compared to a conventional space heating system,about 30%of energy was saved to keep the greenhouse temperature available for growing by radiation from the water storage tank.The main purpose of this study was to test the proposed greenhouse heating systems developed at Nexus by implementing pilot systems on two local farms.Pyrolysis and solar thermal system in conjunction with heat storage and delivery system for each farm were built and tested in order to demonstrate how to reduce greenhouse energy use.This paper describes the results of the case study,which showed significant energy savings that can promote the resource-limited farmers’interest.展开更多
An underground heat storage system in a double-film-covered greenhouse and an adjacent greenhouse without the heat storage system were designed on the basis of plant physiology to reduce the energy consumption in gree...An underground heat storage system in a double-film-covered greenhouse and an adjacent greenhouse without the heat storage system were designed on the basis of plant physiology to reduce the energy consumption in greenhouses. The results indicated that the floor temperature was respectively 5.2℃, 4.6℃ and 2.0 ℃ higher than that of the soil in the adjacent reference greenhouse after heat storage in a clear, cloudy and overcast sky in winter. Results showed that the temperature and humidity were feasible for plant growth in the heat saving greenhouse.展开更多
Dual-roof solar greenhouse, a new style of solar greenhouse, was designed in this study intending to reduce heat loss in cold time and improve land use efficiency in Beijing, the Capital city of China. Designing and a...Dual-roof solar greenhouse, a new style of solar greenhouse, was designed in this study intending to reduce heat loss in cold time and improve land use efficiency in Beijing, the Capital city of China. Designing and applying the dual-roof greenhouse in metropolitan area had dual effects of saving energy and enhancing land use efficiency. According to the monitoring study and analysis conducted in winter of 2012, the averaged night temperature of south room was about 12.1°C in December, which was satisfying for growing average leaf vegetables. Total energy saved by dual-roof in whole winter was quantified as 1.1 × 107 MJ.yr-1 (winter), potentially about 37.4 t coal was saved in Beijing area during whole winter-growing period. Considering the application of north room, the land use efficiency was improved by 62.5% in dual-roof solar greenhouse.展开更多
In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is o...In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.展开更多
Solar greenhouse with trapezoidal soil wall is widely used due to its good heat retaining property and cost efficiency.In this study, solar irradiance, heat flux and the temperature 0.05 and 0.3 m from the inner surfa...Solar greenhouse with trapezoidal soil wall is widely used due to its good heat retaining property and cost efficiency.In this study, solar irradiance, heat flux and the temperature 0.05 and 0.3 m from the inner surface of the wall at the upper,middle and lower measured positions were determined to study the thermal condition of the trapezoidal soil wall in solar greenhouse. The results showed: first, both the solar irradiance and the temperature increased from the upper to the lower measured position. Second, the heat absorption also increased from the upper to the lower measured position. In clear day, the heat absorption at the three measured positions accounted for 31.4%, 32.6% and 36.0% of the total amount of heat absorption of the whole wall. In cloudy day, the heat absorption at the three measured positions were 0.249, 0.370 and 0.440 MJ/m^2, which accounted for 23.5%, 35.0% and 41.4% of the total amount of heat absorption of the whole wall. When P<0.05, the heat fluxes were strikingly different between the upper and lower measured positions. But when P<0.01, the heat flux had no big difference among the three measured positions. Third, in clear day, the heat emission was the biggest at the middle measured position and smallest at the upper measured position. The heat emission at the three measured positions accounted for 27.5%, 36.7%and 35.8% of the total amount of heat emission of the whole wall. And the heat emission between the middle and lower measured position was not strikingly different. In cloudy day, the heat emission was the biggest at the lower measured position and smallest at the upper measured position. The average heat emission at the three measured positions accounted for 26.1%,36.4% and 37.4% of the total amount of heat emission of the whole wall. Fourthly, correlativity, the solar irradiance directly influenced the heat absorption and had close relation with heat emission. And heat emission again had close relation with the temperature in the greenhouse. Solar irradiance directly influences the thermal condition of a solar green house. It is hoped that this study can be referred to optimize trapezoidal structure and to improve the thermal conditions of the solar greenhouse.展开更多
This study aimed to explore the potential of developing a novel cooling system combining a greenhouse and an earth-tube heat exchanger(ETHE).In this system,greenhouse air is circulated through the underneath soil mass...This study aimed to explore the potential of developing a novel cooling system combining a greenhouse and an earth-tube heat exchanger(ETHE).In this system,greenhouse air is circulated through the underneath soil mass to use the deep-soil cooling effect.This was achieved through the following steps.First,soil temperature profile inside and outside the cultivated greenhouse was monitored for almost one year to study the possibility of using deep-soil coldness for cooling the greenhouse air.Second,a prototype ETHE was built to practically investigate the potential reduction in air temperature as the air flows inside the deep earth pipes.Third,a prototype greenhouse was erected to study the ETHE concept.Results from the first experiment revealed that soil temperature at a soil depth of 2.5 m inside the greenhouse offers good conditions to bury the ETHE.The soil temperature at this soil depth was below the maximum temperature(32℃)that most greenhouse crops can withstand.Results from the prototype ETHE showed a slight reduction in air temperature as it passed through the pipes.From the prototype of the integrated greenhouse and ETHE system,reduction in air temperature was observed as the air passed through the ETHE pipes.At night,the air was heated up across the ETHE pipes,indicating that the ETHE was working as a heater.We concluded from this study that greenhouses in arid climates can be cooled using the ETHE concept which would save a large amount of water that would otherwise be consumed in the evaporative coolers.Further investigations are highly encouraged.展开更多
Biochar is charcoal produced at comparatively high temperature and used as an agricultural amendment, which also sequesters carbon. Most of the research on biochar manufacture in the United States has either focused o...Biochar is charcoal produced at comparatively high temperature and used as an agricultural amendment, which also sequesters carbon. Most of the research on biochar manufacture in the United States has either focused on large-scale continuous systems with multiple products or small batch systems with biochar as the only product. At James Madison University in Harrisonburg, Virginia, we have worked on a batch system to make high quality biochar while capturing the heat for use either as a backup system for hot water heating, or to heat a greenhouse in winter. The system is now in its third iteration. In the first, we used a small intramural grant to experiment with low cost material using a minimalist design. While the unit captured some heat, operation of the design was smoky and hazardous to handle. The second design, funded by a larger intramural research grant, captured considerable heat, made 8-10 kg of biochar per burn and captured up to 250 MJ per batch of biochar made, but remained smoky. The third generation pyrolysis unit was constructed on Avalon Acres Farm in Broadway, Virginia, funded by a 25 × 25 grant through James Madison University (JMU). This unit makes the same amount of biochar, with less smoke, and sends the captured heat to a storage tank to help heat a greenhouse and home on the site. Our average efficiency of heat transfer is 12.5% of the total heat value of the starting woody biomass, a number we believe can at least double.展开更多
With the workmanship decrease in farms, the necessity to rationalize the use of other inputs and the development of technology has rapidly expanded the use of computer simulation in agricultural systems. One of the ag...With the workmanship decrease in farms, the necessity to rationalize the use of other inputs and the development of technology has rapidly expanded the use of computer simulation in agricultural systems. One of the agricultural systems in which the modeling process of plant growth has been more engaged is the greenhouse production for horticultural crops. In Mediterranean climate, it is during the night that the energy losses are important and can be compensated with an artificial heat input. In this work an experiment was performed in a greenhouse in the north of Portugal. Temperature values in several points and air velocity in the aperture were measured during the night for three different cases: natural convective heating (case A);artificial heating tubes (AHT) (case B);AHT and natural ventilation (case C). A CFD simulation, carried out using FLOTRAN module of ANSYS, was also performed in two-dimensional configuration to obtain the indoor air temperature and velocity fields for the three cases. A very good agreement between experimental and numerical temperature values were verified, which allows to validate the adopted numerical procedure. In case A, the average temperature was 2.2℃. An average increase of 6.7℃ and 3.5℃ on the air temperature was obtained for the case B and case C, respectively. These results clearly emphasis the influence of each thermal load on greenhouse indoor air properties.展开更多
This paper analyzes the combustion characteristics and greenhouse gas emissions from varied heat fluxes with rice husks. In general, rice husks burnt outdoors at a lower temperature range of 300-400 ℃, which cannot a...This paper analyzes the combustion characteristics and greenhouse gas emissions from varied heat fluxes with rice husks. In general, rice husks burnt outdoors at a lower temperature range of 300-400 ℃, which cannot assure complete combustion, thus generating a large volume of toxic air pollutants. A heat flux of 40 kW/m^2, with a cone calorimeter, is the equivalent to the 700 ℃ of an incinerator. The test result shows that the mass reduction rate of the sample at this or at a higher temperature condition was 99.5% or higher, meaning that the sample was almost completely combusted. In this study using rice husks, the amount of carbon dioxide, which is a greenhouse gas, discharged were 1.57-3.61 kg/kg. This is as high as 10 times, than produced in other studies. When the rice husks are burnt outdoors, they are not completely combusted as the combustion temperature remains low, and the rice husk residuals are continuously being combusted in a smoldering phase which creates a large volume of carbon dioxide and carbon monoxide. Therefore, it is recommended to burn rice husks at 700 ℃ or higher to minimize the carbon dioxide and carbon monoxide emissions.展开更多
Given the growing interest in ground source heat pump and distributed heating installations in general for the reduction of greenhouse gas emissions,technology implementation planning can benefit from the simultaneous...Given the growing interest in ground source heat pump and distributed heating installations in general for the reduction of greenhouse gas emissions,technology implementation planning can benefit from the simultaneous consideration of building renovations.Here,a method for identifying and evaluating scenarios based on cost and greenhouse gas emissions is presented.The method is demonstrated for a case study in Vaasa Finland.The case study considers the insulation of the walls,roof,and base floor and the replacement of windows based on 2003 and 2010 Finnish building codes simultaneously with the possible replacement of existing heat sources with ground source heat pumps.Estimates of changes in heat demand for consecutive renovations are combined with data on renovation,installation,heating costs,and life cycle greenhouse gas emissions data for the current and proposed heat sources.Preferred scenarios are identifi ed and evaluated by building type,construction decade,and current heating source.The results are then placed within the contexts of the Vaasa building stock and policy theory.展开更多
[Objective] The aim was to study the soil temperature changes and its forecast model in greenhouse by solar heat. [Method] Annual and daily variation characters of soil temperature were analyzed in this paper by using...[Objective] The aim was to study the soil temperature changes and its forecast model in greenhouse by solar heat. [Method] Annual and daily variation characters of soil temperature were analyzed in this paper by using the observation data of air temperature out of solar greenhouse and different layers soil temperature in it. The soil temperature (daily maximum, daily minimum and daily mean) forecasting models were also studied. Simulation and test were conducted to the forecast model of soil temperature in the greenhouse. [Result] The annual changes and daily changes of soil temperature of each layer in the greenhouse were in single peak curve. The lower layer temperature changes were smaller than the upper layer. The soil temperature of each layer within the greenhouse was closely related to the relevance of same type temperature outside the greenhouse of the day. Taking the average daily temperature, daily maximum temperature and daily lowest temperature of the day and the day before as forecast factors, soil temperature forecast model of different layer of same type within greenhouse was constructed. The simulation outcome of average daily temperature of each layer within the greenhouse was better than the simulation outcome of highest temperature of corresponding layer, worse than the simulation of lowest temperature of corresponding layer. The highest temperature of lower soil and daily temperature of soil were better than the upper layer. The simulated soil temperature was much more close to the observation when the observation was during 15-30 ℃. In other interval, it was lower than the observation. [Conclusion] The study offered theoretical reference for the growth environment of sunlight greenhouse plantation.展开更多
Water consumption can be reduced by using a greenhouse for agriculture in desert areas. We analyzed the effect of control of ventilation, sprinkler water, and solar radiation?shielding on changes of temperature and hu...Water consumption can be reduced by using a greenhouse for agriculture in desert areas. We analyzed the effect of control of ventilation, sprinkler water, and solar radiation?shielding on changes of temperature and humidity in a greenhouse under various desert area conditions. We calculated the changes in temperature and humidity in a greenhouse for a whole day in four seasons, and the calculation results of water consumption with and without a greenhouse were compared. When ventilation, shielding, and sprinkler water were controlled under suitable conditions to grow orchids in a desert area, water consumption in July was only 7% of that without a greenhouse.展开更多
In order to solve the immaturity of decision-making methods in the regulation of winter heating in greenhouses,this study proposed a solution to the problem of greenhouse winter heating regulation using a dynamic prog...In order to solve the immaturity of decision-making methods in the regulation of winter heating in greenhouses,this study proposed a solution to the problem of greenhouse winter heating regulation using a dynamic programming algorithm.A mathematical model that included indoor environmental state variables,optimization decision variables,and outdoor random variables was established.The temperature is kept close to the expected value and the energy consumption is low.The model predicts the control solution by considering the cost function within the next 10 steps.The two-stage planning method was used to optimize the state of each moment step by step.The temperature control strategy model was obtained by training the relationship between indoor temperature,outdoor temperature,and heating time after optimization using a regression algorithm.Based on a typical Internet of Things(IoT)structure,the greenhouse control system was designed to regulate the optimal control according to the feedback of the current environment.Through testing and verification,the optimized control method could stabilize the temperature near the target value.Compared to the threshold control(threshold interval of 2.0°C)under similar weather conditions,the optimized control method reduced the temperature fluctuation range by 0.9°C and saved 7.83 kW·h of electricity,which is about 14.56%of the total experimental electricity consumption.This shows that the dynamic programming method is feasible for environmental regulation in actual greenhouse production,and further research can be expanded in terms of decision variables and policy models to achieve a more comprehensive,scientific,and precise regulation.展开更多
Under the extremely cold climatic condition,crops have to survive severe heat stress conditions,even if they are being kept in greenhouses.In the winter and spring of North China,the air and soil temperature is low in...Under the extremely cold climatic condition,crops have to survive severe heat stress conditions,even if they are being kept in greenhouses.In the winter and spring of North China,the air and soil temperature is low inside the greenhouse,and when using a traditional heating system,the energy consumption is high.This paper reports on a study of different design solutions for a root zone heating system based on a kind of low temperature radiation material.Root zone heating systems offer increasing crop quality and productivity.A novel type of heat preservation and root zone heating system was applied in greenhouse seedling.And through multiple experiments,the effect of the root zone heating system on the ambient environment and seedbed surface was studied,and the heat preservation effect and heating uniformity were discussed.Results show that single-layer film covering on the root zone heating system can make the average temperature at night increase 1°C.And the average seedbed surface and substrate temperature can increase 11.3°C and 5.2°C,respectively.In conclusion,the root zone heating system can effectively improve the environmental temperature of seedling and the uniformity of heating is high,which provides a strong guarantee for high-quality seedling cultivation.展开更多
Heating greenhouse is indispensable for plant development particularly in winter when the air temperature is lower.In that sense,root zone heating is more energy-saving than traditional air heating.The current work wa...Heating greenhouse is indispensable for plant development particularly in winter when the air temperature is lower.In that sense,root zone heating is more energy-saving than traditional air heating.The current work was devoted to the study of the effect of two root zone heating systems based on carbon crystal electrothermal film and low temperature hot water pipe on the microclimate and tomato yield in solar greenhouse.And their performance was tested in the coldest period of winter in Yongqing County of Hebei Province.The results showed that the use of root zone heating system can improve the average substrate temperature by 6.8℃.This microclimate improvement had a positive impact on tomato production.The output per square meter has increased by 19%compared to the unheated.It was also noted that the presence of root zone heating leads to a decrease in the development of disease in heated areas.Based on these results,the root zone heating system can be an effective method of improving the environmental temperature of crop plant,which is of great significance for increasing crop yield.展开更多
The latest available data for mean annual air temperature at sites away from the Arctic coast in both Alaska and the Yukon Territory show no significant warming in the last 30-50 years. However, around the Arctic coas...The latest available data for mean annual air temperature at sites away from the Arctic coast in both Alaska and the Yukon Territory show no significant warming in the last 30-50 years. However, around the Arctic coast of northwest North America centered on Prudhoe Bay, the weather stations show significant warming of both the air and the ocean water, resulting in substantial losses in sea ice west of Prudhoe Bay. These changes appeared shortly after the commencement of shipment of oil through the Trans-Alaska Pipeline in 1977, but have now reached a quasi-stable thermal state. Since more than 17 trillion barrels of oil have passed through the pipeline after being cooled by the adjacent air, which in turn, can then result in the melting of the adjacent sea ice, there appears to be a very strong relationship between these events, and a marked lack of correlation with the changes of the content of greenhouse gases in the atmosphere. This contrasts with the IPCC interpretation of the available climatic data, which assumes that the maximum climatic warming at Prudhoe Bay is typical of the entire region and is the result of increasing greenhouse gases. Engineers need to consider heat advection by oil or gas from underground when designing pipeline facilities, and to take account of the potential environmental con-sequences that they may cause.展开更多
文摘Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is proposed. Simulation results show that it is effective to overcome the influence of time delay on stability of control system and the system possesses strong robust and good dynamic performance..
文摘Greenhouse is an important place for crop growth, and it is necessary to control the temperature of growing environment in winter. In addition, the root temperature underground also plays a decisive role for plants growth. Adopting underground heating to increase the temperature can effectively improve the yield of crops. The objective of our study was to model the heat transfer of greenhouse underfloor heating which is analyzed and simplified based on the FLUENT software by changing the several important factors that affect the temperature distribution: pipe diameter, pipe spacing, laying depth, supplied water temperature and flow rate, as boundary conditions to simulate the changes of the soil temperature field around the winter night environment. Researching the temperature distribution of the greenhouse, the soil surface and the plant root layer under the different parameters and the basic rules of the heating system are summarized. The results show that the water supply temperature, pipe spacing and diameter of the pipe has a greater impact on the ground and room temperature, and the laying depth has greater impact on the temperature uniformity of the ground, the velocity of water in pipe has little impact on the uniformity of ground temperature.
基金the Agricultural Research,Education and Extension Organization(AREEO)。
文摘This research was conducted to investigate the effects of three heating systems on cucumber yield,and cost and gas volume consumed in greenhouses located in Varamin region,Tehran province,Iran.Conventional heating systems used in the greenhouses are:central heating system(including boiler+hot water pipes),gas heater system(including double-walled tank+blower)and traditional furnace system(including ignition chamber+torch+pipes carrying a mixture of hot air and flammable gases).The study was carried out for two consecutive cucumber cultivation periods from January to June.Average values of crop yield,volume and cost of gas consumed were determined separately for each heating system.Results of the study indicated that the central heating system with the highest crop yield(295 t/ha),and the lowest volume(100,000 m^(3)/ha)and cost(840 USD/ha)of gas consumed was the best and most suitable heating system for greenhouses producing cucumbers in Varamin region and other regions with the same and similar climate as well as regions with active greenhouses in the cold season.
基金The supports provided by the Agricultural Research,Education and Extension Organization,Iran in research project number 2-41-14-031-960719 are gratefully acknowledged.
文摘This research was conducted to study the effect of different heating systems in cucumber production greenhouses in Varamin region,Tehran province,Iran on crop yield,volume and cost of gas consumed.Three types of conventional heating systems,namely the central heating system(including boiler+hot water pipes),gas heater system(including double-walled tank+blower)and traditional furnace system(including ignition chamber+torch+pipes carrying a mixture of hot air and flammable gases)were studied during two consecutive periods of greenhouse cucumber cultivation in the cold season(from January to June),and average values of crop yield,volume and cost of gas consumed were determined separately.Results of the study indicated that the central heating system with the highest crop yield(295 tha^-1),and the lowest volume(100,000 m3ha^-1)and cost(210,000,000 Rialsha^-1)of gas consumed was the best and most suitable heating system for greenhouses producing cucumbers in Varamin region and other regions with the same and similar climate as well as regions with active greenhouses in the cold season.
基金The authors would like to thank local farmers for their assistance with this research,particularly Ms.Amy Fiedler,owner of Springhouse Farm,and Ms.Holly Whitesides and Mr.Andy Bryant,owners of ATG Farm.The information contained in this paper is part of the research project entitled“Promoting Biomass Greenhouse Heating Systems”sponsored by the Bioenergy Research Initiative,NC Department of Agriculture and Consumer Services(Contract 17-078-4003).The authors thank all of the sponsors.
文摘Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,North Carolina(NC),USA,has built a 6.1 m×9.1 m greenhouse,called the“Nexus”to test the integrated sustainable energy heating system for growing season extension with less energy cost.This is done by using on-farm biomass resources/wastes such as agricultural waste and wood chips to produce energy coupled with solar water heating to store and supplement required thermal inputs.Growing season extension with heated greenhouses increases the availability of local food throughout the year,expands available markets and increases farmers’profits.Nexus includes an above ground 5,680-L water storage tank and an aquaculture pond.It is supported by a small-scale pyrolysis system,an anaerobic digestion system,solar thermal and compost heating.The preliminary result showed that compared to a conventional space heating system,about 30%of energy was saved to keep the greenhouse temperature available for growing by radiation from the water storage tank.The main purpose of this study was to test the proposed greenhouse heating systems developed at Nexus by implementing pilot systems on two local farms.Pyrolysis and solar thermal system in conjunction with heat storage and delivery system for each farm were built and tested in order to demonstrate how to reduce greenhouse energy use.This paper describes the results of the case study,which showed significant energy savings that can promote the resource-limited farmers’interest.
基金Project (No. 20050912) supported by the Education Department of Zhejiang Province, China
文摘An underground heat storage system in a double-film-covered greenhouse and an adjacent greenhouse without the heat storage system were designed on the basis of plant physiology to reduce the energy consumption in greenhouses. The results indicated that the floor temperature was respectively 5.2℃, 4.6℃ and 2.0 ℃ higher than that of the soil in the adjacent reference greenhouse after heat storage in a clear, cloudy and overcast sky in winter. Results showed that the temperature and humidity were feasible for plant growth in the heat saving greenhouse.
文摘Dual-roof solar greenhouse, a new style of solar greenhouse, was designed in this study intending to reduce heat loss in cold time and improve land use efficiency in Beijing, the Capital city of China. Designing and applying the dual-roof greenhouse in metropolitan area had dual effects of saving energy and enhancing land use efficiency. According to the monitoring study and analysis conducted in winter of 2012, the averaged night temperature of south room was about 12.1°C in December, which was satisfying for growing average leaf vegetables. Total energy saved by dual-roof in whole winter was quantified as 1.1 × 107 MJ.yr-1 (winter), potentially about 37.4 t coal was saved in Beijing area during whole winter-growing period. Considering the application of north room, the land use efficiency was improved by 62.5% in dual-roof solar greenhouse.
文摘In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.
基金Supported by Ningxia Science and Technology Planning Program
文摘Solar greenhouse with trapezoidal soil wall is widely used due to its good heat retaining property and cost efficiency.In this study, solar irradiance, heat flux and the temperature 0.05 and 0.3 m from the inner surface of the wall at the upper,middle and lower measured positions were determined to study the thermal condition of the trapezoidal soil wall in solar greenhouse. The results showed: first, both the solar irradiance and the temperature increased from the upper to the lower measured position. Second, the heat absorption also increased from the upper to the lower measured position. In clear day, the heat absorption at the three measured positions accounted for 31.4%, 32.6% and 36.0% of the total amount of heat absorption of the whole wall. In cloudy day, the heat absorption at the three measured positions were 0.249, 0.370 and 0.440 MJ/m^2, which accounted for 23.5%, 35.0% and 41.4% of the total amount of heat absorption of the whole wall. When P<0.05, the heat fluxes were strikingly different between the upper and lower measured positions. But when P<0.01, the heat flux had no big difference among the three measured positions. Third, in clear day, the heat emission was the biggest at the middle measured position and smallest at the upper measured position. The heat emission at the three measured positions accounted for 27.5%, 36.7%and 35.8% of the total amount of heat emission of the whole wall. And the heat emission between the middle and lower measured position was not strikingly different. In cloudy day, the heat emission was the biggest at the lower measured position and smallest at the upper measured position. The average heat emission at the three measured positions accounted for 26.1%,36.4% and 37.4% of the total amount of heat emission of the whole wall. Fourthly, correlativity, the solar irradiance directly influenced the heat absorption and had close relation with heat emission. And heat emission again had close relation with the temperature in the greenhouse. Solar irradiance directly influences the thermal condition of a solar green house. It is hoped that this study can be referred to optimize trapezoidal structure and to improve the thermal conditions of the solar greenhouse.
基金the Sultan Qaboos University and United Arab Emirates University for the research fund(CL/SQU-UAEU/15/04).
文摘This study aimed to explore the potential of developing a novel cooling system combining a greenhouse and an earth-tube heat exchanger(ETHE).In this system,greenhouse air is circulated through the underneath soil mass to use the deep-soil cooling effect.This was achieved through the following steps.First,soil temperature profile inside and outside the cultivated greenhouse was monitored for almost one year to study the possibility of using deep-soil coldness for cooling the greenhouse air.Second,a prototype ETHE was built to practically investigate the potential reduction in air temperature as the air flows inside the deep earth pipes.Third,a prototype greenhouse was erected to study the ETHE concept.Results from the first experiment revealed that soil temperature at a soil depth of 2.5 m inside the greenhouse offers good conditions to bury the ETHE.The soil temperature at this soil depth was below the maximum temperature(32℃)that most greenhouse crops can withstand.Results from the prototype ETHE showed a slight reduction in air temperature as it passed through the pipes.From the prototype of the integrated greenhouse and ETHE system,reduction in air temperature was observed as the air passed through the ETHE pipes.At night,the air was heated up across the ETHE pipes,indicating that the ETHE was working as a heater.We concluded from this study that greenhouses in arid climates can be cooled using the ETHE concept which would save a large amount of water that would otherwise be consumed in the evaporative coolers.Further investigations are highly encouraged.
文摘Biochar is charcoal produced at comparatively high temperature and used as an agricultural amendment, which also sequesters carbon. Most of the research on biochar manufacture in the United States has either focused on large-scale continuous systems with multiple products or small batch systems with biochar as the only product. At James Madison University in Harrisonburg, Virginia, we have worked on a batch system to make high quality biochar while capturing the heat for use either as a backup system for hot water heating, or to heat a greenhouse in winter. The system is now in its third iteration. In the first, we used a small intramural grant to experiment with low cost material using a minimalist design. While the unit captured some heat, operation of the design was smoky and hazardous to handle. The second design, funded by a larger intramural research grant, captured considerable heat, made 8-10 kg of biochar per burn and captured up to 250 MJ per batch of biochar made, but remained smoky. The third generation pyrolysis unit was constructed on Avalon Acres Farm in Broadway, Virginia, funded by a 25 × 25 grant through James Madison University (JMU). This unit makes the same amount of biochar, with less smoke, and sends the captured heat to a storage tank to help heat a greenhouse and home on the site. Our average efficiency of heat transfer is 12.5% of the total heat value of the starting woody biomass, a number we believe can at least double.
文摘With the workmanship decrease in farms, the necessity to rationalize the use of other inputs and the development of technology has rapidly expanded the use of computer simulation in agricultural systems. One of the agricultural systems in which the modeling process of plant growth has been more engaged is the greenhouse production for horticultural crops. In Mediterranean climate, it is during the night that the energy losses are important and can be compensated with an artificial heat input. In this work an experiment was performed in a greenhouse in the north of Portugal. Temperature values in several points and air velocity in the aperture were measured during the night for three different cases: natural convective heating (case A);artificial heating tubes (AHT) (case B);AHT and natural ventilation (case C). A CFD simulation, carried out using FLOTRAN module of ANSYS, was also performed in two-dimensional configuration to obtain the indoor air temperature and velocity fields for the three cases. A very good agreement between experimental and numerical temperature values were verified, which allows to validate the adopted numerical procedure. In case A, the average temperature was 2.2℃. An average increase of 6.7℃ and 3.5℃ on the air temperature was obtained for the case B and case C, respectively. These results clearly emphasis the influence of each thermal load on greenhouse indoor air properties.
文摘This paper analyzes the combustion characteristics and greenhouse gas emissions from varied heat fluxes with rice husks. In general, rice husks burnt outdoors at a lower temperature range of 300-400 ℃, which cannot assure complete combustion, thus generating a large volume of toxic air pollutants. A heat flux of 40 kW/m^2, with a cone calorimeter, is the equivalent to the 700 ℃ of an incinerator. The test result shows that the mass reduction rate of the sample at this or at a higher temperature condition was 99.5% or higher, meaning that the sample was almost completely combusted. In this study using rice husks, the amount of carbon dioxide, which is a greenhouse gas, discharged were 1.57-3.61 kg/kg. This is as high as 10 times, than produced in other studies. When the rice husks are burnt outdoors, they are not completely combusted as the combustion temperature remains low, and the rice husk residuals are continuously being combusted in a smoldering phase which creates a large volume of carbon dioxide and carbon monoxide. Therefore, it is recommended to burn rice husks at 700 ℃ or higher to minimize the carbon dioxide and carbon monoxide emissions.
文摘Given the growing interest in ground source heat pump and distributed heating installations in general for the reduction of greenhouse gas emissions,technology implementation planning can benefit from the simultaneous consideration of building renovations.Here,a method for identifying and evaluating scenarios based on cost and greenhouse gas emissions is presented.The method is demonstrated for a case study in Vaasa Finland.The case study considers the insulation of the walls,roof,and base floor and the replacement of windows based on 2003 and 2010 Finnish building codes simultaneously with the possible replacement of existing heat sources with ground source heat pumps.Estimates of changes in heat demand for consecutive renovations are combined with data on renovation,installation,heating costs,and life cycle greenhouse gas emissions data for the current and proposed heat sources.Preferred scenarios are identifi ed and evaluated by building type,construction decade,and current heating source.The results are then placed within the contexts of the Vaasa building stock and policy theory.
基金Supported by Jiangsu Meteorological Scientific Research Open Fund Program (200905)
文摘[Objective] The aim was to study the soil temperature changes and its forecast model in greenhouse by solar heat. [Method] Annual and daily variation characters of soil temperature were analyzed in this paper by using the observation data of air temperature out of solar greenhouse and different layers soil temperature in it. The soil temperature (daily maximum, daily minimum and daily mean) forecasting models were also studied. Simulation and test were conducted to the forecast model of soil temperature in the greenhouse. [Result] The annual changes and daily changes of soil temperature of each layer in the greenhouse were in single peak curve. The lower layer temperature changes were smaller than the upper layer. The soil temperature of each layer within the greenhouse was closely related to the relevance of same type temperature outside the greenhouse of the day. Taking the average daily temperature, daily maximum temperature and daily lowest temperature of the day and the day before as forecast factors, soil temperature forecast model of different layer of same type within greenhouse was constructed. The simulation outcome of average daily temperature of each layer within the greenhouse was better than the simulation outcome of highest temperature of corresponding layer, worse than the simulation of lowest temperature of corresponding layer. The highest temperature of lower soil and daily temperature of soil were better than the upper layer. The simulated soil temperature was much more close to the observation when the observation was during 15-30 ℃. In other interval, it was lower than the observation. [Conclusion] The study offered theoretical reference for the growth environment of sunlight greenhouse plantation.
文摘Water consumption can be reduced by using a greenhouse for agriculture in desert areas. We analyzed the effect of control of ventilation, sprinkler water, and solar radiation?shielding on changes of temperature and humidity in a greenhouse under various desert area conditions. We calculated the changes in temperature and humidity in a greenhouse for a whole day in four seasons, and the calculation results of water consumption with and without a greenhouse were compared. When ventilation, shielding, and sprinkler water were controlled under suitable conditions to grow orchids in a desert area, water consumption in July was only 7% of that without a greenhouse.
基金supported by the National Key Research and Development Program(Grant No.2021YFE0103000)National Key Research and Development Program(Grant No.2022YFD1900400)Ningxia Hui Autonomous Region Key Research and Development Programme(Grant No.2022BBF02026).
文摘In order to solve the immaturity of decision-making methods in the regulation of winter heating in greenhouses,this study proposed a solution to the problem of greenhouse winter heating regulation using a dynamic programming algorithm.A mathematical model that included indoor environmental state variables,optimization decision variables,and outdoor random variables was established.The temperature is kept close to the expected value and the energy consumption is low.The model predicts the control solution by considering the cost function within the next 10 steps.The two-stage planning method was used to optimize the state of each moment step by step.The temperature control strategy model was obtained by training the relationship between indoor temperature,outdoor temperature,and heating time after optimization using a regression algorithm.Based on a typical Internet of Things(IoT)structure,the greenhouse control system was designed to regulate the optimal control according to the feedback of the current environment.Through testing and verification,the optimized control method could stabilize the temperature near the target value.Compared to the threshold control(threshold interval of 2.0°C)under similar weather conditions,the optimized control method reduced the temperature fluctuation range by 0.9°C and saved 7.83 kW·h of electricity,which is about 14.56%of the total experimental electricity consumption.This shows that the dynamic programming method is feasible for environmental regulation in actual greenhouse production,and further research can be expanded in terms of decision variables and policy models to achieve a more comprehensive,scientific,and precise regulation.
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2017YFD0701500)and the Hebei Province Key Research and Development Program(Grant No.19227214D).
文摘Under the extremely cold climatic condition,crops have to survive severe heat stress conditions,even if they are being kept in greenhouses.In the winter and spring of North China,the air and soil temperature is low inside the greenhouse,and when using a traditional heating system,the energy consumption is high.This paper reports on a study of different design solutions for a root zone heating system based on a kind of low temperature radiation material.Root zone heating systems offer increasing crop quality and productivity.A novel type of heat preservation and root zone heating system was applied in greenhouse seedling.And through multiple experiments,the effect of the root zone heating system on the ambient environment and seedbed surface was studied,and the heat preservation effect and heating uniformity were discussed.Results show that single-layer film covering on the root zone heating system can make the average temperature at night increase 1°C.And the average seedbed surface and substrate temperature can increase 11.3°C and 5.2°C,respectively.In conclusion,the root zone heating system can effectively improve the environmental temperature of seedling and the uniformity of heating is high,which provides a strong guarantee for high-quality seedling cultivation.
基金support provided by Hebei Province Key Research and Development Program(Grant No.21327210D)Independent Research and Development Plan of Academy of Agricultural Planning and Engineering,Ministry of Agriculture and Rural Affairs(Grant No.SP202101,Grant No.QD202107).
文摘Heating greenhouse is indispensable for plant development particularly in winter when the air temperature is lower.In that sense,root zone heating is more energy-saving than traditional air heating.The current work was devoted to the study of the effect of two root zone heating systems based on carbon crystal electrothermal film and low temperature hot water pipe on the microclimate and tomato yield in solar greenhouse.And their performance was tested in the coldest period of winter in Yongqing County of Hebei Province.The results showed that the use of root zone heating system can improve the average substrate temperature by 6.8℃.This microclimate improvement had a positive impact on tomato production.The output per square meter has increased by 19%compared to the unheated.It was also noted that the presence of root zone heating leads to a decrease in the development of disease in heated areas.Based on these results,the root zone heating system can be an effective method of improving the environmental temperature of crop plant,which is of great significance for increasing crop yield.
文摘The latest available data for mean annual air temperature at sites away from the Arctic coast in both Alaska and the Yukon Territory show no significant warming in the last 30-50 years. However, around the Arctic coast of northwest North America centered on Prudhoe Bay, the weather stations show significant warming of both the air and the ocean water, resulting in substantial losses in sea ice west of Prudhoe Bay. These changes appeared shortly after the commencement of shipment of oil through the Trans-Alaska Pipeline in 1977, but have now reached a quasi-stable thermal state. Since more than 17 trillion barrels of oil have passed through the pipeline after being cooled by the adjacent air, which in turn, can then result in the melting of the adjacent sea ice, there appears to be a very strong relationship between these events, and a marked lack of correlation with the changes of the content of greenhouse gases in the atmosphere. This contrasts with the IPCC interpretation of the available climatic data, which assumes that the maximum climatic warming at Prudhoe Bay is typical of the entire region and is the result of increasing greenhouse gases. Engineers need to consider heat advection by oil or gas from underground when designing pipeline facilities, and to take account of the potential environmental con-sequences that they may cause.